The objective of this course is to provide a complete introduction to Artificial Intelligence.
Technically, there are two general forms of inference to deal with AI problems: logical and probabilistic inference. Agents in the real world need to handle partially known and uncertain worlds, which is best modeled by probabilistic approaches. So modern treatments are primarily based on statistics, and our discussions will also focus on that route.
This course is organized into a 12-week session (4 hours per week). The main contents are listed below:
本课程计划安排12周内容,主要讲授内容分别如下:
Monday, Wednesday; 9-405.
Week | Date | Lecture | Handouts |
---|---|---|---|
1 | 2025/02/17 | 绪论:人工智能的基本概念,人工智能的发展简史;人工智能的流派,人工智能研究的基本方法方法 | |
1 | 2025/02/19 | 绪论:人工智能的主要研究领域,人工智能的研究途径与方法 | |
2 | 2025/02/24 | 搜索:基本搜索技术 | |
2 | 2025/02/26 | 搜索:启发式搜索技术;实验环境配置 | |
3 | 2025/03/03 | 搜索:博弈树搜索技术(Minimax、\alpha-\beta) | |
3 | 2025/03/05 | 实验:GoogLeNet | |
4 | 2025/03/10 | 搜索:博弈树搜索技术(Monte Carlo 树搜索) | |
4 | 2025/03/12 | 实验:DenseNet | |
5 | 2025/03/17 | 进化算法概述;遗传算法:要素建模 | |
5 | 2025/03/19 | 实验:DenseNet | |
6 | 2025/03/24 | 遗传算法:举例 | |
6 | 2025/03/26 | 实验:EfficientNet | |
7 | 2025/03/31 | 粒子群算法,蚁群算法 | |
7 | 2025/04/02 | 实验:EfficientNet | |
8 | 2025/04/07 | 约束满足问题(CSP) | |
8 | 2025/04/09 | 实验:Transformer | |
9 | 2025/04/14 | 约束满足问题(CSP) | |
9 | 2025/04/16 | 实验:Transformer | |
10 | 2025/04/21 | 命题逻辑 | |
10 | 2025/04/23 | 实验:Yolo | |
10 | 2025/04/27 | 一阶逻辑 | |
11 | 2025/04/28 | 强化学习 | |
11 | 2025/04/30 | 实验:分割网络 | |
12 | 2025/05/07 | 总结与测试 |
Not mandatory but recommended: