Algorithm Il

11. Approximation Algorithms

WU Xiaokun 2885

xkun.wu [at] gmail

i

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?
A. Sacrifice one of three desired features.

» 1. Solve arbitrary instances of the problem.
« 2. Solve problem to optimality.
» 3. Solve problem in polynomial time.

p-approximation algorithm.

« Runs in polynomial time.
» Applies to arbitrary instances of the problem.
» Guaranteed to find a solution within ratio p of true optimum.

Challenge. Need to prove a solution’'s value is close to optimum value, without even
knowing what optimum value is!

Load balancing

i

Load balancing
Input. m identical machines; n > m jobs, job j has processing time ;.

» A job must run contiguously on one machine.
« A machine can process at most one job at a time.

Def. Let S|i| be the subset of jobs assigned to machine i. The load of machine i is
Lji] = zjr—:Sf:‘j tj.

Def. The makespan is the maximum load on any machine L = max; L[i|.

Load balancing. Assign each job to a machine to minimize makespan.

a adf f f
b cceggyg

6
7

LOAD-BALANCE on 2 machines is NP-hard

Claim. Load balancing is hard even if m = 2 machines.
Pf. PARTITION <p» LOAD-BALANCE.

Number Partitioning Problem. [Exercise 8.26] You are given positive integers

ri, .., Tn; you want to decide whether the numbers can be partitioned into two sels

51 and S, with the same sum: } __ . 5, Ti = D ;-

I, - S':

» Hint: SUBSET-SUM < p PARTITION

i

LOAD-BALANCE: list scheduling

List-scheduling algorithm.

» Consider n jobs in some fixed order.
« Assign job j to machine ¢ whose load is smallest so far.

LIST-SCHEDULING (m,n,t1, 2, .., tn)

1. FOR i = 1..m:
1. L[i] = 0;
2. S[i] = 0;
2.FOR 3 = 1..n:

1.1 = argmin;, L[k];
2. S[i] = SE|U {5},
3. Lli] = L[i| + t;;
3. RETURN S[1], (2], ., S[m];

Implementation. O(n log m) using a priority queue for loads L|[k|.

i

Demo: list scheduling

Greedy for LOAD-BALANCE: analysis

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

« First worst-case analysis of an approximation algorithm.
» Need to compare resulting solution with optimal makespan L”.

i

Greedy for LOAD-BALANCE: analysis

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

« First worst-case analysis of an approximation algorithm.
» Need to compare resulting solution with optimal makespan L”.

Lemma 1. For all k: the optimal makespan L* = t,..
Pf. Some machine must process the most time-consuming job.

Lemma 2. The optimal makespan L* > - 7, #.
Pf.

« The total processing time is , ;.
» One of m machines must do at least a 1/m fraction of total work.

Greedy for LOAD-BALANCE: analysis

Bottleneck machine. Machine that has highest load after dispatching.

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L|i| of bottleneck machine i.

» Let 5 be last job scheduled on machine 1.
 When job ;7 assigned to machine %, « had smallest load.
« Its load before assignment is Li| — ¢;; hence L|i| — t; < L{k|forall 1 <
k<m.

machine |

&
-
=
= =
~
F
L. ams = == S ———

Liil-y L = L[] L

=

i

Greedy for LOAD-BALANCE: analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L i| of bottleneck machine i.

» Let 7 be last job scheduled on machine 1.
« When job j assigned to machine z, « had smallest load.
= Its load before assignment is Li] — ¢;, hence L[i| — t; < L{k]forall 1 <
k< m.
« Sum inequalities over all k£ and divide by m:

1 1
Ljit| —1; < — Ligl = — tp < L°
-t < o= 3

e Now, L = L[i] = (L[i] — ;) + t; <2L*.
o

i

Greedy for LOAD-BALANCE: tightness

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, first m(m-1) jobs have length 1, last job has length $Sm.

|, T
b 3 14

« list scheduling makespan = 19 = 2m — 1
« optimal makespan = 10 = m

i

Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in decreasing order of processing
times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING (m,n,ty, ta, .., tx)

1. SORT jobs and renumber sothatt, > t, = .. > t,,.

2. FOR7 =1..m:
1. Lii| =0,
2. S[i] = 0;

3. FOR 37 = 1..n.

1.7 = argmin, L[k
2. 8[i] = S[i| U {j};
3. L[] = L[i] + t;;
4. RETURN S[1], §[2], .., S[m];

i

LPT for Load balancing: analysis

Observation. If bottleneck machine i has only 1 job, then optimal.
Pf. Any solution must schedule that job.

Lemma 3. If there are more than m jobs, L* > 2t,, ..
Pf. Consider processing times of first m + 1 jobst, > t2 > .. = t41.

» Each takes at least ¢,,,.; time.

« There are m + 1 jobs and m machines, so by pigeonhole principle, at least one
machine gets two jobs.

Theorem. LPT rule is a 3/2-approximation algorithm.
Pf. [similar to proof for list scheduling]

« Consider load L|i| of bottleneck machine 3.
» Let 7 be last job scheduled on machine s.
= assuming machine ¢ has at least 2 jobs, we have 7 > m + 1

i

e Now, L = L[i] = (L[i] — t;) + ¢;
~

*'_Vﬂr
<L* <

[T

L_lr

S

b | S

L*.

i

LPT for Load balancing: analysis

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

EX.

« m machines, n = 2m + 1 jobs

 2m jobs of length m, m + 1, .., 2m~1 and one more job of length m.

e Then, L/L* = ((m+ (2m — 1)) +m)/(((3m — 1) * m + m)/m) = (dm —
1)/(3m)

i

Center selection

i

Center selection problem

Input. Set of n sites s, .., s, and an integer k& > 0.

Center selection problem. Select set of k& centers C' so that maximum distance
r(C') from a site to nearest center is minimized.

k = 4 centers
: ‘

§ center
W e

i

Center selection problem

Input. Set of n sites s, .., s, and an integer k& > 0.

Center selection problem. Select set of k& centers C' so that maximum distance
r(C) from a site to nearest center is minimized.

Notation.

» dist(zx,y) = distance between sites = and y.
e dist(s;,C') = min..¢ dist(s;,c) = distance from s; to closest center.
« r(C) = max; dist(s;, C') = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

o [identity] dist(z,z) = 0
e [symmetry | dist(z,y) = dist(y, z)
e [triangle inequality] dist(x,y) < dist(z,z) + dist(z,y)

i

Center selection: example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(z, y)
= Euclidean distance.

Remark: search can be infinite!

k = 4 centers

({im]
& center
B site

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a single
center, and then keep adding centers so as to reduce the covering radius each time
by as much as possible.

Remark: arbitrarily bad!

» EX. two seperated cluster of sites.

i

Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.
GREEDY-CENTER-SELECTION (k,n, 81, 82, .., 5n)

1. G=03

2. REPEAT k times
1. Select a site s; with maximum distance dist(s;, C),
D=L B

3. RETURN (),

Property. Upon termination, all centers in C are pairwise at least »(C') apart.
Pf. By construction, »(C') = max; dist(s;, C') = maximum distance dist(s;, C).

i

Greedy for center selection: analysis

Lemma. Let C* be an optimal set of centers. Then r(C') < 2r(C*).
Pt. [by contradiction] Assume ;r(C) > r(C*) :=r.

» For each site ¢; € C, draw a ball of radius r around it.
« Consider a site s covered by ¢; € C, with dist(s,c;) > 2r.
= ¢; covered by C*:let ¢! be the center paired with ¢;.
= If s covered by ¢, then dist(s,c;) > 2r > dist(s,c!) + dist(c!,c;)!
= Otherwise, by farthest selection rule, dist(s,c;) > 2r,Vc; € C.
o Need k center to cover ¢; € C, not possible to cover s.

i

Center selection

Lemma. Let C* be an optimal set of centers. Then »(C) < 2r(C*).
Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of
2 of best solution that is allowed to place centers anywhere.

Question. Is there hope of a 3/2-approximation? 4/37?

DOMINATING-SET <p CENTER-SELECTION

Theorem. Unless P = NP, there no p-approximation for center selection problem
forany p < 2.

Pf. We show how we could use a (2—¢)-approximation algorithm for CENTER-
SELECTION selection to solve DOMINATING-SET in poly-time.

DOMINATING-SET. Each vertex is adjacent to at least one member of the

DOMINATING-SET, as opposed to each edge being incident to at least one member
of the VERTEX-COVER.

i

DOMINATING-SET <p CENTER-SELECTION

Theorem. Unless P = AP, there no p-approximation for center selection problem
forany p < 2.

Pf. We show how we could use a (2—¢)-approximation algorithm for CENTER-
SELECTION selection to solve DOMINATING-SET in poly-time.

e Let G = (V, E), k be an instance of DOMINATING-SET.

« Construct instance G’ of CENTER-SELECTION with sites V' and distances
o dist(u,v) =11if (u,v) € E
o dist(u,v) =21if (u,v) ¢ E

 Note that G’ satisfies the triangle inequality.

» (G has dominating set of size k iff there exists k centers C* with r(C*) = 1.

« Thus, if G has a dominating set of size k, a (2—¢)-approximation algorithm for
CENTER-SELECTION would find a solution C* with »(C*) = 1 since it cannot
use any edge of distance 2.

Pricing method: weighted vertex
cover

i

Weighted vertex cover

Definition. Given a graph G = (V, E), a vertex cover is a set S C V such that
each edge in E has at least one end in §.

Weighted vertex cover. Given a graph G = (V/, E) with vertex weights w; > 0, find
a vertex cover of minimum weight.

© ®
How to define “progress” in this setting?

« small weight w;.
e cover lots of elements.

i

Greedy method
How to define “progress” in this setting?

e small weight w;.
» cover lots of elements.

Option 1. w; /|S;|: “cost per element covered”.

Option 2. w; /|S; N R|: we are only concerned with elements still left uncovered.

i

Greedy method
How to define “progress” in this setting?

e small weight w;.
» cover lots of elements.

Option 1. w; /|S;|: “cost per element covered”.
Option 2. w; /|S; N R|: we are only concerned with elements still left uncovered.
Greedy algorithm. Assignment.

Greedy analysis. O(log d*)-approximation, d* = max; |S;|. Assignhment.

i

Pricing method

Pricing method. Each edge must be covered by some vertex.
Edge e = (1, j) pays price p. = 0 to use both vertex 7 and j.

Fairness. Edges incident to vertex ¢ should pay < w; in total.

*i€. X e—(ij)Pe < Wi

@ &

Fairness lemma. For any vertex cover S and any fair prices p, : >, p. < w(5).
Pl D ecuPe < Dics 2oe(ij)Pe S Dies Wi < w(S).

i

Pricing algorithm
WEIGHTED-VERTEX-COVER (G, w)

1.5 =0;

2. FOREACHe € E:p,. = 0;

3. WHILE (there exists an edge (i, 7) such that neither ¢ nor j is tighf)
1. Select such an edge e = (i, 7);
2. Increase p. as much as possible until z or j tight;

4. S = set of all tight nodes;

5. RETURN §;

i

Pricing method: example

i

Pricing method: analysis

Theorem. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER.
Pf.

« Algorithm terminates since at least one new node becomes tight after each
iteration of while loop.
« Let S = set of all tight nodes upon termination of algorithm.
= S is a vertex cover: if some edge (i, j) is uncovered, then neither i nor j is
tight. But then while loop would not terminate.
 Let S* be optimal vertex cover. We show w(S) < 2w(S*).

i

all nodes tight
SEV
edge counted twice

fairness lemma

LP rounding: weighted vertex cover

Weighted vertex cover

Definition. Given a graph G = (V, E), a vertex cover is a set S C V such that
each edge in E has at least one end in §.

Weighted vertex cover. Given a graph G = (V/, E) with vertex weights w; > 0, find
a vertex cover of minimum weight.

@

Weighted vertex cover: ILP formulation

Weighted vertex cover. Given a graph G = (V, E) with vertex weights w; > 0, find
a vertex cover of minimum weight.

Integer linear programming formulation.

« Model inclusion of each vertex ¢ using a 0/1 variable x;.
« Vertex covers in 1-1 correspondence with 0/1 assignments: S = {i € V' :
€Ly — 1}
» Objective function: minimize > . w;z;.
» For every edge (i, j), must take either vertex ¢ or j (or both): z; + z; > 1.

ILP formulation in math language
Weighted vertex cover. Integer linear programming formulation.
(ILP) min Zwi.’r;

ieV

8.1. £Ly +$J E 1 (E,_’}'} el
x; € {0,1} ieV

Observation. If =* is optimal solution to ILP, then S = {i € V : 27 = 1} is a min-
weight vertex cover.

i

Integer linear programming

Given integers a;;, b;, ¢;, find integers x ; that satisfy:

4

minc & R
min E Gy
st.Az > b L 7
J=3
A 0 n
® . §og i j 4 ,::':
x is integral 5.t. Z a;;T; > b; 1<:<m
7=1

i =0 1<3<n

xjisintegral 1<j<n

Observation. Vertex cover formulation proves that INTEGER-PROGRAMMING is an
NP-hard optimization problem.

i

linear programming

Given integers a;;, b;, ¢;, find real numbers z; that satisfy:

. n
minc T)
mch-m-
s.t. Az > b = o
=1

j=1

Linear. No z?%, zy, arccos(z), z(1-z), etc.
Simplex algorithm. [Dantzig 1947] Can solve LP in practice.

Ellipsoid algorithm. [Khachiyan 1979] Can solve LP in poly-time.

T
E.t.Zﬂﬂiﬂjibf 1 <Et<MmM

i

LP feasible region

LP geometry in 2D.

’-Th-c region satisfying the inequalitie
x) =, ."I.: =0
N+ ix; 26
2+ X206

|

Weighted vertex cover: LP relaxation

Linear programming relaxation.

(ILP) min Zwl-:.':,- (LP) min Z'w;-:l:,-
icV i€V
s.t. z; +x; =1 (1,7) € s.t. z; +2; > 1

iEjE{ﬂ,l} 1 E ¥ >0

(i,j) € E
1€V

i

Weighted vertex cover: LP relaxation

Linear programming relaxation.

(ILP) min Zwl-m,- (LP) min Ziﬂjmj
el el
i £Lg -+ IJ E 1 {E,j) = s.t. T -+ I; :_"‘" 1
iE;'E{'U,].} 1 E ¥ >0

Observation. Optimal value of LP is < optimal value of ILP, ie. better.
Pf. LP has fewer constraints.

Note. LP solution =* may not correspond to a vertex
cover. (even if all weights are 1)

(i,j) € E
1€V

Weighted vertex cover: LP relaxation

Linear programming relaxation.

(ILP) min Zwl-m,- (LP) min Ziﬂjmj
i€V eV
i £Lg -+ IJ E 1 {E,j) = s.t. T -+ I; :_"‘" 1 (L_‘}'J =)
z; € {0,1} i€ z; >0 ieV

Observation. Optimal value of LP is < optimal value of ILP, ie. better.
Pf. LP has fewer constraints.

Note. LP solution =* may not correspond to a vertex
cover. (even if all weights are 1)

Q. How can solving LP help us find a low-weight vertex cover?
— A. Solve LP and round fractional values in z*.

i

LP rounding algorithm

Lemma. If z* is optimal solutionto LP,then S =i e V : 2} > }g Is a vertex cover
whose weight is at most twice the min possible weight.
Pf.[S is a vertex cover]

« Consider an edge (i,j) € E.

e Since z} + % > 1, either 2} > Jorz; > 5 (or both) = (i, j) covered.

Pf. [5 has desired weight]

» Let S* be optimal vertex cover. Then
. Zvﬁé-‘j“ w; 2 Z;{;;Swim? 2 % Er’-’:‘S w;

i

LP rounding algorithm

Lemma. If z* is optimal solutionto LP,then S =i e V : 2} > }g Is a vertex cover
whose weight is at most twice the min possible weight.
Pf.[S is a vertex cover]

« Consider an edge (i,j) € E.

e Since z} + % > 1, either 2} > Jorz; > 5 (or both) = (i, j) covered.

Pf. [5 has desired weight]

» Let S* be optimal vertex cover. Then
. Zvﬁé-‘j“ w; 2 Z;{;;Swim? 2 % Er’-’:‘S w;

Theorem. The rounding algorithm is a 2-approximation algorithm.
Pf. Lemma + fact that LP can be solved in poly-time.

Weighted vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P # NP, then no p-approximation algorithm for
WEIGHTED-VERTEX-COVER for any p < 1.3606 (even if all weights are 1).

Open research problem. Close the gap.

Theorem. [Kohot—Regev 2008] If Unique Games Conjecture is true, then no (2 — €)-
approximation algorithm for WEIGHTED-VERTEX-COVER for any € > 0.

Open research problem. Prove the Unique Games Conjecture.

i

Generalized load balancing

i

Generalized load balancing
Input. Set of m machines M ; set of n jobs J.

 Job j € J must run contiguously on an authorized machinein M; C M.
 Job j € J has processing time t;.
« Each machine can process at most one job at a time.

Def. Let .J; be the subset of jobs assigned to machine i.
The load of machine iis L; =) _;.; t;.

Def. The makespan is the maximum load on any machine = max; L;.

Generalized load balancing. Assign each job to an authorized machine to minimize
makespan.

Integer linear program and relaxation

ILP formulation. z;; = time that machine : spends processing job j.

(ILP) min L
i

Tij E{U,f‘.j} Vj e dJ,ice ﬂffj
:I:-,'j:[} "E-"rjEJ,?:ﬁéJ‘Jj

LP relaxation.

i

(LP) min L
s.t. Z Tij =t Vied

ZI@;EL Vie M
J

ﬂ:-gj:_}ﬁ \E”jEJ,iEMj
z; =0 VjeJ,i¢ M,

i

Lower bounds

Lemma 1. The optimal makespan L* > max; t;.
Pf. Some machine must process the most time-consuming job.

Lemma 2. Let L be optimal value to the LP. Then, optimal makespan L* > L.
Pf. LP has fewer constraints than ILP formulation.

i

Structure of LP solution

Lemma 3. Let = be solution to LP. Let G(z) be the graph with an edge between
machine i and job j if z;; > 0. Then G(z) is acyclic.

Pf. (deferred)
4 %

A;\ : Xy =0
-;'-'| .|' ": |_E Ir.‘:l _":l

e T

| et

Gix} acyclic) Giix) cyeclic
.)} Job

| | machine

Why a job can connect to multiple machines?

« LP solution may break the job into small fractions.

i

Generalized LB: rounding

Rounded solution. Find LP solution z where G(z) is a forest. Root forest G(z) at
some arbitrary machine node r.

« If job j is a leaf node, assign j to its parent machine |.
« [f job 7 is not a leaf node, assign j to any one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job 7 is assigned to machine ¢, then z;; > 0. LP solution can only assign
positive value to authorized machines.

i

Generalized LB: analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then z;;
Pf.

« Since jis a leaf, z;; = 0 for all k # parent(j).
e LP constraint guarantees) . z;; = t;.

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i).

]

i

Generalized LB: analysis

Theorem. Rounded solution is a 2-approximation.
Pf.

 Let J(i) be the jobs assigned to machine i.

« By LEMMA 6, the load L; on machine i has two components:
= parent: t,q,.0n) < L* (LEMMA 1)
= |leaf nodes:

jed(i) JEJ(i)
i: ZIH ‘E L LP
JEJ
<L LEMMA 2

e Thus, the overall load L; < 2L*.

i

Generalized LB: flow formulation

Flow formulation of LP.

& Jule
E Eilj — t_.l' VJ € J ':_;h__ q____h.h‘.uhlr-:s
i \ ;=

ZIE-U < I Vie M "'F"““"-(?{f{ffj H\'

¥ - & | Ei mx\'}'
IU :_3’ U 1‘3'"} - J, 1 & ﬂrfi '::__1}—}"‘{'*-&;& ; i —*/D[?am.md - Y.t
2;=0 YjeJ,igM; VAN G

Observation. Solution to feasible flow problem with value L are in 1-fo-1
correspondence with LP solutions of value L.

i

Generalized LB: structure of solution

Lemma 3. Let (z, L) be solution to LP. Let G(z) be the graph with an edge from
machine i to job j if z;; > 0. We can find another solution (z’, L) such that G(z') is
acyclic.

Pf. Let C' be a cycle in G(z).

« Augment flow along the cycle C' (maintain conservation).
« At least one edge from C' is removed (and none are added).
« Repeat until G(z') is acyclic.

augment flow
along cycle C

e T. 6 | O_E/_\e
e » . >o

. fs 4 @4\

i

Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP
with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m + n + 1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra—Shmoys-Tardos 1990]

« Job j takes t;; time if processed on machine i.
« 2-approximation algorithm via LP rounding.
e If P % NP, then no no p-approximation exists for any p < 3/2.

Knapsack problem

Polynomial-time approximation scheme
PTAS. (1 + €)-approximation algorithm for any constant e > 0.

» Load balancing. [Hochbaum—Shmoys 1987]
« Euclidean TSP. [Arora, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off
accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

i

Knapsack problem

Knapsack problem.

« (Given n objects and a knapsack.

 [tem 7 has value v; > 0 and weighs w; > 0.

« Knapsack has weight limit W .

« Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

item value weight

1 1 1

2 6 2
3 18 5
A 22 6
5 28 7

i

Knapsack is NP-complete

SUBSET-SUM. Given a set X, values u; > 0, and an integer U, is there a subset
S C X whose elements sum to exactly U ?

KNAPSACK. Given a set X, weights w; > 0, values v; = 0, a weight limit W, and a
target value V, is there a subset S C X such that:

Zw:' < W,Zih' <V
ics

ieS

Theorem. SUBSET-SUM < p KNAPSACK.
Pf. Given instance (uy, .., u,, U) of SUBSET-SUM, create KNAPSACK instance:

v = Wy = Uy E U; ﬂ U

ieS

V=W=U) w<U

ieS

i

Knapsack problem: DP |
Def. OPT'(i, w) = max value subset of items 1, .., with weight limit w.
Case 1. OFT does not select item i.
e OPT selects best of 1, .., 7 — 1 using up to weight limit w.
Case 2. OPT selects item i.
 New weight limit = w — w;.

« OPT selects best of 1,..,7 — 1 using up to weight limit w — w;.

0 ife =10
OFT(i,w) =< OPT(i—1,w) ifw;, >w
max{OPT (i — 1,w),v; + OPT(i — 1,w — w;)} otherwise
Theorem. Computes the optimal value in O(nW) time.

« Not polynomial in input size.

i

» Polynomial in input size if weights are small integers.

i

Knapsack problem: DP Il

Def. OPT'(i,v) = min weight of a knapsack for which we can obtain a solution of
value > v using a subset of items 1, .., 2.

Note. Optimal value is the largest value v such that OPT (n,v) < W.
Case 1. OPT does not select item 3.

» OPT selects best of 1, .., 7 — 1 that achieves value > v.
Case 2. OFPT selects item z.

« Consumes weight w;, need to achieve value > v — v;.
« OPT selects best of 1,..,7 — 1 that achieves value > v — v;.

0 ifv <0
OPI(i,v) =4{ o0 ifi =0andv >0
min{OPT'(i — 1,v),w; + OPT'(i — 1,v — v;)} otherwise

i

Knapsack problem: DP Il (cont.)

Theorem. Dynamic programming algorithm Il computes the optimal value in
O(n*v,,,,) time, where v,,,,. is the maximum of any value.
Pf.

« The optimal value V* < nv,...

» There is one subproblem for each item and for each value v < v,,,,,-
e It takes O(1) time per subproblem.

Remark 1. Not polynomial in input size! (pseudo-polynomial)
Remark 2. Polynomial time if values are small integers.

Poly-time approximation scheme

Intuition for approximation algorithm.

« Round all values up to lie in smaller range.
« Run dynamic programming algorithm |l on rounded/scaled instance.
« Return optimal items in rounded instance.

item value weight item value weight
1 934221 1 1 1 1
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7

i

Poly-time approximation scheme
Round up all values:

e 0 < e < 1 = precision parameter.
* Ve = largest value in original instance.
 § = scaling factor = ev,q./2n.

Observation. Optimal solutions to problem with © are equivalent to optimal solutions
to problem with ©.

Intuition. @ close to v so optimal solution using v is nearly optimal; ¢ small and
integral so dynamic programming algorithm |l is fast.

Poly-time approximation scheme

Theorem. If S is solution found by rounding algorithm and S* is any other feasible

solution satisfying weight constraint, then (1 +€) > . _cvi = > . . v
Pf.

i

round up
optimality
rounding gap

S| <n

6 = evpar /20

Umnaz < Ezvi

icS

i

Poly-time approximation scheme

Theorem. For any € > 0, the rounding algorithm computes a feasible solution whose

value is within a (1 + €) factor of the optimum in O(n* /¢) time.
Pf.

« We have already proved the accuracy bound.
« Dynamic program Il running time is O(n* o,), Where

Umaz —
P '3

a Umaz 2n
l=[—]

