Algorithm II

11. Approximation Algorithms

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Coping with NP-completeness

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Sacrifice one of three desired features.
 - 1. Solve arbitrary instances of the problem.
 - 2. Solve problem to optimality.
 - 3. Solve problem in polynomial time.

ρ -approximation algorithm.

- Runs in polynomial time.
- Applies to arbitrary instances of the problem.
- Guaranteed to find a solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum value, without even knowing what optimum value is!

Load balancing

Load balancing

Input. m identical machines; $n \geq m$ jobs, job j has processing time t_j .

- A job must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let S[i] be the subset of jobs assigned to machine i. The **load** of machine i is $L[i] = \sum_{j \in S[i]} t_j$.

Def. The **makespan** is the maximum load on any machine $L = \max_i L[i]$.

Load balancing. Assign each job to a machine to minimize makespan.

6	a	а	d	f	f	f	
7	b	С	С	е	g	g	g

LOAD-BALANCE on 2 machines is NP-hard

Claim. Load balancing is hard even if m=2 machines.

Pf. PARTITION \leq_P LOAD-BALANCE.

Number Partitioning Problem. [Exercise 8.26] You are given positive integers $x_1,...,x_n$; you want to decide whether the numbers can be partitioned into two sets S_1 and S_2 with the same sum: $\sum_{x_i \in S_1} x_i = \sum_{x_i \in S_2} x_j$.

Hint: SUBSET-SUM ≤_P PARTITION

6	a	а	d	f	f	f
6	b	С	С	е	g	g

LOAD-BALANCE: list scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine i whose load is smallest so far.

```
LIST-SCHEDULING (m, n, t_1, t_2, ..., t_n)
```

- 1. FOR i = 1..m:
 - 1. L[i] = 0;
 - 2. $S[i] = \emptyset$;
- 2. FOR j = 1..n:
 - 1. $i = \arg\min_{k} L[k];$
 - 2. $S[i] = S[i] \cup \{j\};$
 - 3. $L[i] = L[i] + t_j$;
- 3. RETURN S[1], S[2], ..., S[m];

Implementation. $O(n \log m)$ using a priority queue for loads L[k].

Demo: list scheduling

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- ullet Need to compare resulting solution with optimal makespan L^* .

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^* .

Lemma 1. For all k: the optimal makespan $L^* \geq t_k$.

Pf. Some machine must process the most time-consuming job.

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_k t_k$. **Pf**.

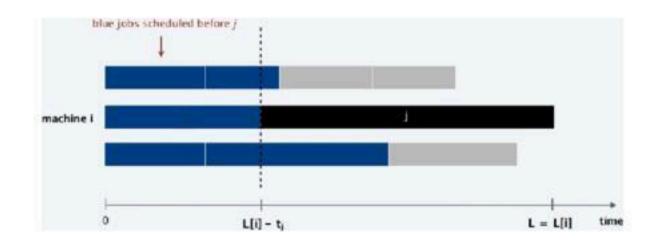
- The total processing time is $\sum_k t_k$.
- One of m machines must do at least a 1/m fraction of total work.

Bottleneck machine. Machine that has highest load after dispatching.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L[i] of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load.
 - Its load before assignment is $L[i]-t_j$; hence $L[i]-t_j \leq L[k]$ for all $1 \leq k \leq m$.



Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L[i] of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load.
 - Its load before assignment is $L[i]-t_j$; hence $L[i]-t_j \leq L[k]$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m:

$$L[i] - t_j \leq rac{1}{m} \sum_k L[k] = rac{1}{m} \sum_k t_k \leq L^*$$

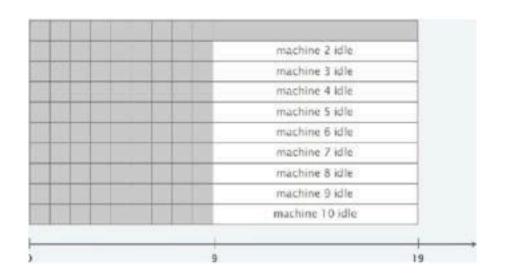
ullet Now, $L=L[i]=\underbrace{(L[i]-t_j)}_{\leq L^*}+\underbrace{t_j}_{\leq L^*}\leq 2L^*.$

Greedy for LOAD-BALANCE: tightness

Q. Is our analysis tight?

A. Essentially yes.

Ex: m machines, first m(m-1) jobs have length 1, last job has length \$\$m.



- ullet list scheduling makespan =19=2m-1
- optimal makespan = 10 = m

Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in *decreasing* order of processing times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING
$$(m, n, t_1, t_2, ..., t_n)$$

- 1. SORT jobs and renumber so that $t_1 \geq t_2 \geq ... \geq t_n$.
- 2. FOR i = 1..m:
 - 1. L[i] = 0;
 - 2. $S[i] = \emptyset$;
- 3. FOR j = 1..n:
 - 1. $i = \arg\min_{k} L[k];$
 - 2. $S[i] = S[i] \cup \{j\};$
 - 3. $L[i] = L[i] + t_i$;
- 4. RETURN S[1], S[2], ..., S[m];

LPT for Load balancing: analysis

Observation. If bottleneck machine i has only 1 job, then optimal.

Pf. Any solution must schedule that job.

Lemma 3. If there are more than m jobs, $L^* \geq 2t_{m+1}$.

Pf. Consider processing times of first m+1 jobs $t_1 \geq t_2 \geq ... \geq t_{m+1}$.

- Each takes at least t_{m+1} time.
- ullet There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs.

Theorem. LPT rule is a 3/2-approximation algorithm.

Pf. [similar to proof for list scheduling]

- Consider load L[i] of bottleneck machine i.
- Let j be last job scheduled on machine i.
 - lacksquare assuming machine i has at least 2 jobs, we have $j \geq m+1$

$$ullet$$
 Now, $L=L[i]=\underbrace{(L[i]-t_j)}_{\leq L^*}+\underbrace{t_j}_{\leq rac{1}{2}L^*}\leq rac{3}{2}L^*.$

LPT for Load balancing: analysis

 \mathbf{Q} . Is our 3/2 analysis tight?

A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.

Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?

A. Essentially yes.

Ex.

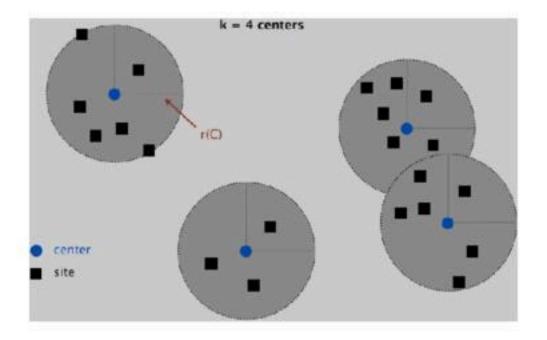
- m machines, n=2m+1 jobs
- 2m jobs of length m, m + 1, ..., 2m-1 and one more job of length m.
- ullet Then, $L/L^* = ((m+(2m-1))+m)/(((3m-1)*m+m)/m) = (4m-1)/(3m)$

Center selection

Center selection problem

Input. Set of n sites $s_1,...,s_n$ and an integer k>0.

Center selection problem. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.



Center selection problem

Input. Set of n sites $s_1, ..., s_n$ and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between sites x and y.
- $dist(s_i, C) = \min_{c \in C} dist(s_i, c)$ = distance from s_i to closest center.
- $r(C) = \max_{i} dist(s_i, C)$ = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C|=k.

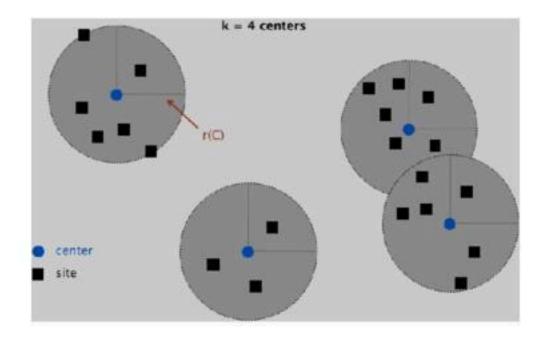
Distance function properties.

- [identity] dist(x, x) = 0
- [symmetry] dist(x, y) = dist(y, x)
- [triangle inequality] $dist(x,y) \leq dist(x,z) + dist(z,y)$

Center selection: example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!



Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Ex. two seperated cluster of sites.

Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

GREEDY-CENTER-SELECTION $(k, n, s_1, s_2, ..., s_n)$

- 1. $C = \emptyset$;
- 2. REPEAT k times
 - 1. Select a site s_i with maximum distance $dist(s_i, C)$;
 - 2. $C = C \cup s_i$;
- 3. RETURN C;

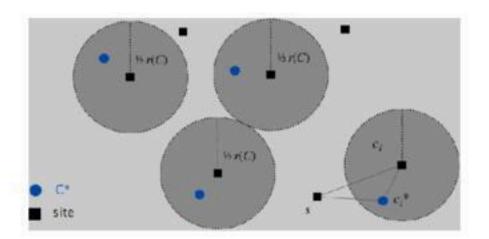
Property. Upon termination, all centers in C are pairwise at least r(C) apart.

Pf. By construction, $r(C) = \max_i dist(s_i, C)$ = maximum distance $dist(s_i, C)$.

Greedy for center selection: analysis

Lemma. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$. **Pf**. [by contradiction] Assume $\frac{1}{2}r(C) > r(C^*) := r$.

- For each site $c_i \in C$, draw a ball of radius r around it.
- Consider a site s covered by $c_i \in C$, with $dist(s, c_i) > 2r$.
 - c_i covered by C^* : let c_i^* be the center paired with c_i .
 - ullet If s covered by c_i^* , then $dist(s,c_i)>2r\geq dist(s,c_i^*)+dist(c_i^*,c_i)!$
 - ullet Otherwise, by farthest selection rule, $dist(s,c_j)>2r, orall c_j\in C.$
 - \circ Need k center to cover $c_i \in C$, not possible to cover s.



Center selection

Lemma. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

Question. Is there hope of a 3/2-approximation? 4/3?

DOMINATING-SET \leq_P CENTER-SELECTION

Theorem. Unless $\mathcal{P} = \mathcal{NP}$, there no ρ -approximation for center selection problem for any $\rho < 2$.

Pf. We show how we could use a $(2-\epsilon)$ -approximation algorithm for CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

DOMINATING-SET. Each *vertex* is adjacent to at least one member of the DOMINATING-SET, as opposed to each *edge* being incident to at least one member of the VERTEX-COVER.

DOMINATING-SET \leq_P CENTER-SELECTION

Theorem. Unless $\mathcal{P} = \mathcal{NP}$, there no ρ -approximation for center selection problem for any $\rho < 2$.

Pf. We show how we could use a $(2-\epsilon)$ -approximation algorithm for CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

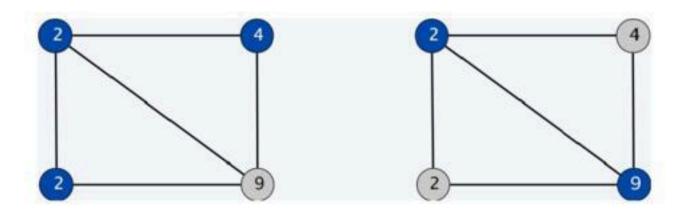
- Let G = (V, E), k be an instance of DOMINATING-SET.
- Construct instance G' of CENTER-SELECTION with sites V and distances
 - $ullet dist(u,v)=1 ext{ if } (u,v)\in E$
 - dist(u,v)=2 if $(u,v)\notin E$
- Note that G' satisfies the triangle inequality.
- G has dominating set of size k iff there exists k centers C^* with $r(C^*) = 1$.
- Thus, if G has a dominating set of size k, a $(2-\epsilon)$ -approximation algorithm for CENTER-SELECTION would find a solution C^* with $r(C^*)=1$ since it cannot use any edge of distance 2.

Pricing method: weighted vertex cover

Weighted vertex cover

Definition. Given a graph G = (V, E), a **vertex cover** is a set $S \subseteq V$ such that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G = (V, E) with vertex weights $w_i \ge 0$, find a vertex cover of minimum weight.



How to define "progress" in this setting?

- small weight w_i .
- · cover lots of elements.

Greedy method

How to define "progress" in this setting?

- small weight w_i .
- cover lots of elements.

Option 1. $w_i/|S_i|$: "cost per element covered".

Option 2. $w_i/|S_i \cap R|$: we are only concerned with elements still left uncovered.

Greedy method

How to define "progress" in this setting?

- small weight w_i .
- cover lots of elements.

Option 1. $w_i/|S_i|$: "cost per element covered".

Option 2. $w_i/|S_i \cap R|$: we are only concerned with elements still left uncovered.

Greedy algorithm. Assignment.

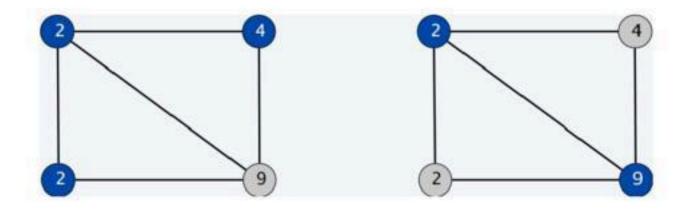
Greedy analysis. $O(\log d^*)$ -approximation, $d^* = \max_i |S_i|$. Assignment.

Pricing method

Pricing method. Each edge must be covered by some vertex. Edge e=(i,j) pays price $p_e\geq 0$ to use both vertex i and j.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

• ie. $\sum_{e=(i,j)} p_e \leq w_i$



Fairness lemma. For any vertex cover S and any fair prices $p_e: \sum_e p_e \leq w(S)$. Pf. $\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i \leq w(S)$.

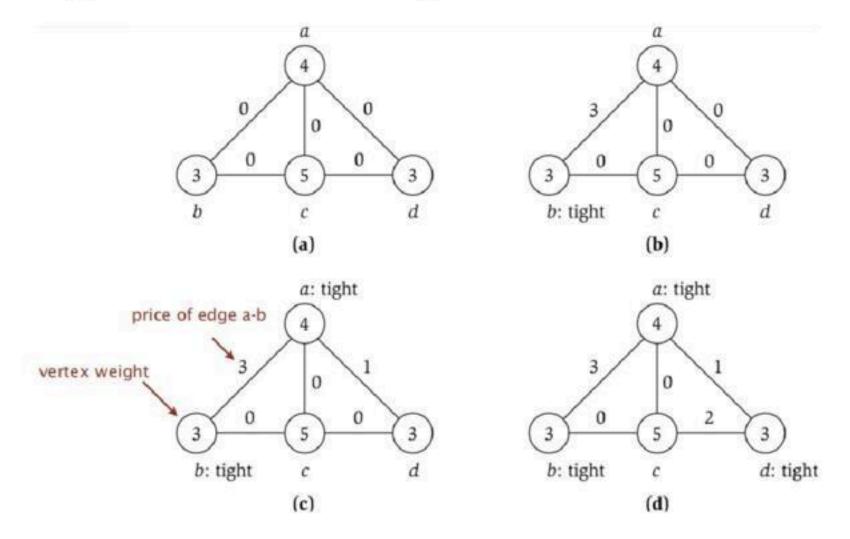
Pricing algorithm

WEIGHTED-VERTEX-COVER (G, w)

- 1. $S = \emptyset$;
- 2. FOREACH $e \in E$: $p_e = 0$;
- 3. WHILE (there exists an edge (i, j) such that neither i nor j is tight)
 - 1. Select such an edge e = (i, j);
 - 2. Increase p_e as much as possible until i or j tight;
- 4. S = set of all tight nodes;
- 5. RETURN S;

tight.
$$\sum_{e=(i,j)} p_e = w_i$$

Pricing method: example



Pricing method: analysis

Theorem. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER. **Pf**.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm.
 - S is a vertex cover: if some edge (i, j) is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S^* be optimal vertex cover. We show $w(S) \leq 2w(S^*)$.

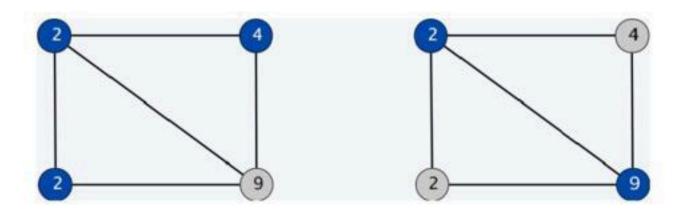
$$egin{aligned} w(S) &= \sum_{i \in S} w_i & ext{all nodes tight} \ &= \sum_{i \in S} \sum_{e = (i,j)} p_e & S \subseteq V \ &\leq \sum_{i \in V} \sum_{e = (i,j)} p_e & ext{edge counted twice} \ &= 2 \sum_{e \in E} pe \leq 2w(S^*) & ext{fairness lemma} \end{aligned}$$

LP rounding: weighted vertex cover

Weighted vertex cover

Definition. Given a graph G = (V, E), a **vertex cover** is a set $S \subseteq V$ such that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G = (V, E) with vertex weights $w_i \ge 0$, find a vertex cover of minimum weight.



Weighted vertex cover: ILP formulation

Weighted vertex cover. Given a graph G = (V, E) with vertex weights $w_i \ge 0$, find a vertex cover of minimum weight.

Integer linear programming formulation.

- Model inclusion of each vertex i using a 0/1 variable x_i .
 - Vertex covers in 1–1 correspondence with 0/1 assignments: $S=\{i\in V: x_i=1\}.$
- Objective function: minimize $\sum_i w_i x_i$.
- For every edge (i, j), must take either vertex i or j (or both): $x_i + x_j \ge 1$.

ILP formulation in math language

Weighted vertex cover. Integer linear programming formulation.

$$(ext{ILP}) egin{array}{ll} \min & \sum_{i \in V} w_i x_i \ & ext{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \ & x_i \in \{0,1\} & i \in V \end{array}$$

Observation. If x^* is optimal solution to ILP, then $S=\{i\in V: x_i^*=1\}$ is a minweight vertex cover.

Integer linear programming

Given integers a_{ij} , b_i , c_j , find integers x_j that satisfy:

$$egin{aligned} \min c^T x \ & ext{s.t. } Ax \geq b \ & ext{} x \geq 0 \ & ext{} x ext{ is integral} \end{aligned} \qquad egin{aligned} \min \sum_{j=1}^n c_j x_j \ & ext{} & ext{} x_j \geq b_i \end{aligned} \qquad 1 \leq i \leq m \ & ext{} x_j \geq 0 \qquad 1 \leq j \leq n \ & ext{} x_j ext{ is integral} \end{aligned} \qquad 1 \leq j \leq n$$

Observation. Vertex cover formulation proves that INTEGER-PROGRAMMING is an NP-hard optimization problem.

linear programming

Given integers a_{ij} , b_i , c_j , find real numbers x_j that satisfy:

$$egin{aligned} \min c^T x \ & ext{s.t. } Ax \geq b \ & ext{} x \geq 0 \end{aligned} \qquad egin{aligned} \min \sum_{j=1}^n c_j x_j \ & ext{} x_j \geq b_i \quad 1 \leq i \leq m \end{aligned}$$

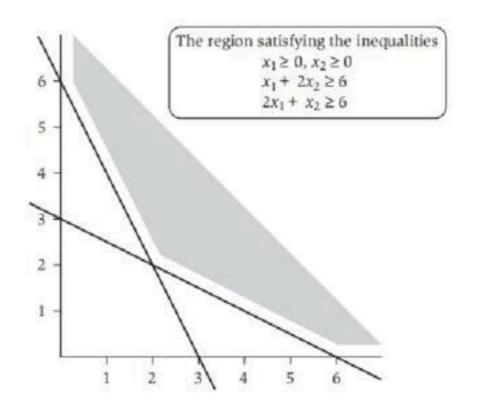
Linear. No x^2 , xy, $\arccos(x)$, x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.

Ellipsoid algorithm. [Khachiyan 1979] Can solve LP in poly-time.

LP feasible region

LP geometry in 2D.



Weighted vertex cover: LP relaxation

Linear programming relaxation.

$$\begin{array}{llll} \text{(ILP)} & \min & \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in \\ & x_i \in \{0,1\} & i \in \end{array} & \begin{array}{lll} \text{(LP)} & \min & \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \\ & x_i \geq 0 & i \in V \end{array}$$

Weighted vertex cover: LP relaxation

Linear programming relaxation.

$$\begin{array}{llll} \text{(ILP) min} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in \\ & x_i \in \{0,1\} & i \in \end{array} & \text{s.t.} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \\ & x_i \geq 0 & i \in V \end{array}$$

Observation. Optimal value of LP is \leq optimal value of ILP, ie. better. **Pf**. LP has fewer constraints.

Note. LP solution x^* may not correspond to a vertex cover. (even if all weights are 1)

Weighted vertex cover: LP relaxation

Linear programming relaxation.

$$\begin{array}{llll} \text{(ILP) min} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in \\ & x_i \in \{0,1\} & i \in \end{array} & \text{s.t.} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \\ & x_i \geq 0 & i \in V \end{array}$$

Observation. Optimal value of LP is \leq optimal value of ILP, ie. better. **Pf**. LP has fewer constraints.

Note. LP solution x^* may not correspond to a vertex cover. (even if all weights are 1)

Q. How can solving LP help us find a low-weight vertex cover?

A. Solve LP and round fractional values in x^* .

LP rounding algorithm

Lemma. If x^* is optimal solution to LP, then $S = i \in V : x_i^* \ge \frac{1}{2}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i,j) \in E$.
- Since $x_i^* + x_j^* \geq 1$, either $x_i^* \geq \frac{1}{2} or x_j^* \geq \frac{1}{2}$ (or both) $\Rightarrow (i,j)$ covered.

Pf. [S has desired weight]

- Let S* be optimal vertex cover. Then
 - ullet $\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq rac{1}{2} \sum_{i \in S} w_i$

LP rounding algorithm

Lemma. If x^* is optimal solution to LP, then $S = i \in V : x_i^* \ge \frac{1}{2}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i,j) \in E$.
- Since $x_i^* + x_j^* \geq 1$, either $x_i^* \geq \frac{1}{2} or x_j^* \geq \frac{1}{2}$ (or both) $\Rightarrow (i,j)$ covered.

Pf. [S has desired weight]

- Let S* be optimal vertex cover. Then
 - $lacksquare \sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq rac{1}{2} \sum_{i \in S} w_i$

Theorem. The rounding algorithm is a 2-approximation algorithm.

Pf. Lemma + fact that LP can be solved in poly-time.

Weighted vertex cover inapproximability

Theorem. [Dinur–Safra 2004] If $\mathcal{P} \neq \mathcal{NP}$, then no ρ -approximation algorithm for WEIGHTED-VERTEX-COVER for any $\rho < 1.3606$ (even if all weights are 1).

Open research problem. Close the gap.

Theorem. [Kohot–Regev 2008] If Unique Games Conjecture is true, then no $(2 - \epsilon)$ -approximation algorithm for WEIGHTED-VERTEX-COVER for any $\epsilon > 0$.

Open research problem. Prove the Unique Games Conjecture.

Generalized load balancing

Generalized load balancing

Input. Set of m machines M; set of n jobs J.

- Job $j \in J$ must run contiguously on an *authorized machine* in $M_j \subseteq M$.
- Job $j \in J$ has processing time t_j .
- Each machine can process at most one job at a time.

Def. Let J_i be the subset of jobs assigned to machine i.

The **load** of machine i is $L_i = \sum_{j \in J_i} t_j$.

Def. The **makespan** is the maximum load on any machine = $\max_i L_i$.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Integer linear program and relaxation

ILP formulation. x_{ij} = time that machine i spends processing job j.

$$egin{array}{ll} ext{(ILP) min} & L \ & ext{s.t.} & \sum_i x_{ij} = t_j & orall j \in J \ & \sum_j x_{ij} \leq L & orall i \in M \ & x_{ij} \in \{0,t_j\} & orall j \in J, i \in M_j \ & x_{ij} = 0 & orall j \in J, i
otin M_j \end{array}$$

LP relaxation.

$$egin{array}{ll} ext{(LP) min} & L \ & ext{s.t.} & \sum_i x_{ij} = t_j & orall j \in J \ & \sum_i x_{ij} \leq L & orall i \in M \ & ext{} & ext$$

Lower bounds

Lemma 1. The optimal makespan $L^* \geq \max_j t_j$.

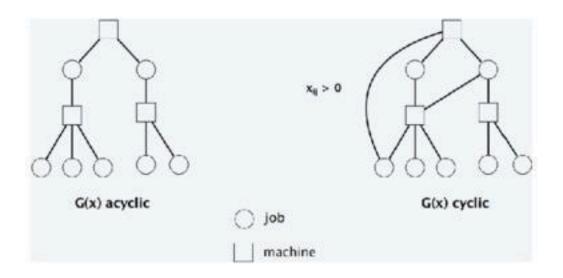
Pf. Some machine must process the most time-consuming job.

Lemma 2. Let L be optimal value to the LP. Then, optimal makespan $L^* \geq L$.

Pf. LP has fewer constraints than ILP formulation.

Structure of LP solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge between machine i and job j if $x_{ij} > 0$. Then G(x) is acyclic. **Pf**. (deferred)



Why a job can connect to multiple machines?

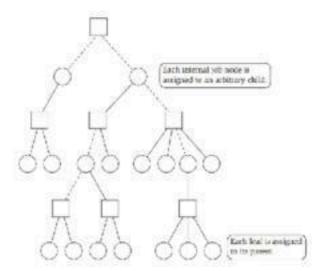
LP solution may break the job into small fractions.

Generalized LB: rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x) at some *arbitrary* machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to any one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines. **Pf**. If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machines.

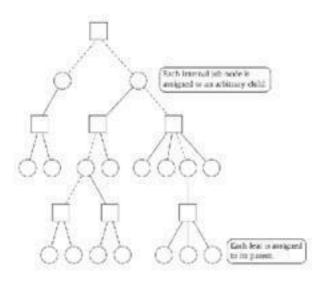


Generalized LB: analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_j$. **Pf**.

- Since j is a leaf, $x_{ij} = 0$ for all $k \neq parent(j)$.
- LP constraint guarantees $\sum_i x_{ij} = t_j$.

Lemma 6. At most one non-leaf job is assigned to a machine. **Pf**. The only possible non-leaf job assigned to machine i is parent(i).



Generalized LB: analysis

Theorem. Rounded solution is a 2-approximation. **Pf**.

- Let J(i) be the jobs assigned to machine i.
- By LEMMA 6, the load L_i on machine i has two components:
 - ullet parent: $t_{parent(i)} \leq L^*$ (LEMMA 1)
 - leaf nodes:

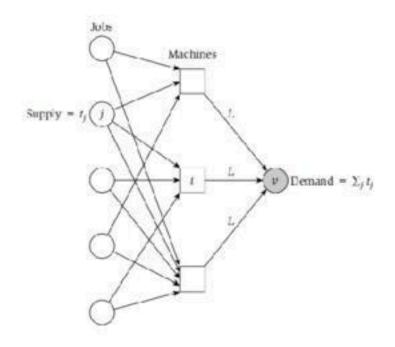
$$egin{aligned} \sum_{j \in J(i)} t_j &= \sum_{j \in J(i)} x_{ij} & ext{LEMMA 5} \ &\leq \sum_{j \in J} x_{ij} \leq L & ext{LP} \ &\leq L^* & ext{LEMMA 2} \end{aligned}$$

• Thus, the overall load $L_i \leq 2L^*$.

Generalized LB: flow formulation

Flow formulation of LP.

$$egin{aligned} \sum_i x_{ij} &= t_j & orall j \in J \ \sum_j x_{ij} &\leq L & orall i \in M \ x_{ij} &\geq 0 & orall j \in J, i \in M_j \ x_{ij} &= 0 & orall j \in J, i
otin M_j \end{aligned}$$



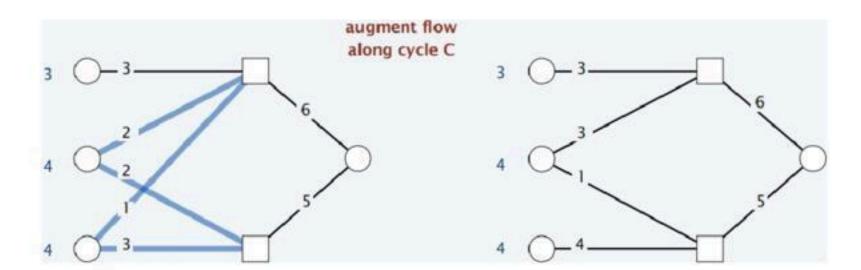
Observation. Solution to feasible flow problem with value L are in 1-to-1 correspondence with LP solutions of value L.

Generalized LB: structure of solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. We can find another solution (x', L) such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).

- Augment flow along the cycle C (maintain conservation).
- At least one edge from C is removed (and none are added).
- Repeat until G(x') is acyclic.



Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m + n + 1 nodes: given L, find feasible flow if it exists. Binary search to find L^* .

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t_{ij} time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- If $\mathcal{P} \neq \mathcal{NP}$, then no no ρ -approximation exists for any $\rho < 3/2$.

Knapsack problem

PTAS. $(1 + \epsilon)$ -approximation algorithm for any constant $\epsilon > 0$.

- Load balancing. [Hochbaum–Shmoys 1987]
- Euclidean TSP. [Arora, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack problem

Knapsack problem.

- Given n objects and a knapsack.
- Item i has value $v_i > 0$ and weighs $w_i > 0$.
- Knapsack has weight limit W.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3, 4\}$ has value 40.

item	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack is NP-complete

SUBSET-SUM. Given a set X, values $u_i \geq 0$, and an integer U, is there a subset $S \subseteq X$ whose elements sum to exactly U?

KNAPSACK. Given a set X, weights $w_i \geq 0$, values $v_i \geq 0$, a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \leq W, \sum_{i \in S} v_i \leq V$$

Theorem. SUBSET-SUM \leq_P KNAPSACK.

Pf. Given instance $(u_1,..,u_n,U)$ of SUBSET-SUM, create KNAPSACK instance:

$$egin{aligned} v_i &= w_i &= u_i & \sum_{i \in S} u_i \leq U \ V &= W &= U & \sum_{i \in S} u_i \leq U \end{aligned}$$

Knapsack problem: DP I

Def. $OPT(i, w) = \max \text{ value subset of items } 1, ..., i \text{ with } weight \text{ limit } w$.

Case 1. OPT does not select item i.

• OPT selects best of 1, ..., i-1 using up to weight limit w.

Case 2. OPT selects item i.

- New weight limit = w − w_i.
- OPT selects best of 1,..,i-1 using up to weight limit $w-w_i$.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

Theorem. Computes the optimal value in O(nW) time.

· Not polynomial in input size.

Polynomial in input size if weights are small integers.

Knapsack problem: DP II

Def. $OPT(i, v) = \min$ weight of a knapsack for which we can obtain a solution of $value \ge v$ using a subset of items 1, ..., i.

Note. Optimal value is the largest value v such that $OPT(n, v) \leq W$.

Case 1. OPT does not select item i.

• OPT selects best of 1, ..., i-1 that achieves value $\geq v$.

Case 2. OPT selects item i.

- Consumes weight w_i , need to achieve value $\geq v v_i$.
- OPT selects best of 1, ..., i-1 that achieves value $\geq v-v_i$.

$$OPT(i,v) = \left\{ \begin{array}{ll} 0 & \text{if } v \leq 0 \\ \infty & \text{if } i = 0 \text{ and } v > 0 \\ \min\{OPT(i-1,v), w_i + OPT(i-1,v-v_i)\} & \text{otherwise} \end{array} \right.$$

Knapsack problem: DP II (cont.)

Theorem. Dynamic programming algorithm II computes the optimal value in $O(n^2v_{max})$ time, where v_{max} is the maximum of any value. **Pf**.

- ullet The optimal value $V^* \leq n v_{max}$.
- There is one subproblem for each item and for each value $v \leq v_{max}$.
- It takes O(1) time per subproblem.

Remark 1. Not polynomial in input size! (pseudo-polynomial)

Remark 2. Polynomial time if values are small integers.

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm II on rounded/scaled instance.
- Return optimal items in rounded instance.

item	value	weight
1	934221	1
2	5956342	2
3	17810013	5
4	21217800	6
5	27343199	7

item	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Round up all values:

- $0 < \epsilon \le 1$ = precision parameter.
- v_{max} = largest value in original instance.
- θ = scaling factor = $\epsilon v_{max}/2n$.

$$ar{v_i} = \lceil rac{v_i}{ heta}
ceil heta, \hat{v_i} = \lceil rac{v_i}{ heta}
ceil$$

Observation. Optimal solutions to problem with \bar{v} are equivalent to optimal solutions to problem with \hat{v} .

Intuition. \bar{v} close to v so optimal solution using \bar{v} is nearly optimal; \hat{v} small and integral so dynamic programming algorithm II is fast.

Theorem. If S is solution found by rounding algorithm and S^* is any other feasible solution satisfying weight constraint, then $(1+\epsilon)\sum_{i\in S}v_i\geq \sum_{i\in S^*}v_i$ **Pf**.

$$\sum_{i \in S^*} v_i \leq \sum_{i \in S^*} ar{v}_i$$

round up

$$\leq \sum_{i = c} ar{v_i}$$

optimality

$$\leq \sum_{i \in S} (v_i + heta) \qquad ext{ rounding gap}$$

$$\leq \sum v_i + n heta \qquad |S| \leq n$$

$$=\sum_{i\in S}v_i+rac{1}{2}\epsilon v_{max}$$
 $heta=\epsilon v_{max}/2n$

$$\leq (1+\epsilon)\sum_{i\in S} v_i \qquad v_{max} \leq 2\sum_{i\in S} v_i$$

Theorem. For any $\epsilon > 0$, the rounding algorithm computes a feasible solution whose value is within a $(1 + \epsilon)$ factor of the optimum in $O(n^3/\epsilon)$ time. **Pf**.

- We have already proved the accuracy bound.
- Dynamic program II running time is $O(n^2 \hat{v}_{max})$, where

$$\hat{v}_{max} = \lceil rac{v_{max}}{ heta}
ceil = \lceil rac{2n}{\epsilon}
ceil$$

