#### Algorithm II

# 11. Approximation Algorithms

WU Xiaokun 吴晓堃

xkun.wu [at] gmail



#### Coping with NP-completeness

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Sacrifice one of three desired features.
  - 1. Solve arbitrary instances of the problem.
  - 2. Solve problem to optimality.
  - 3. Solve problem in polynomial time.

#### $\rho$ -approximation algorithm.

- Runs in polynomial time.
- Applies to arbitrary instances of the problem.
- Guaranteed to find a solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum value, without even knowing what optimum value is!

# Load balancing

### Load balancing

**Input**. m identical machines;  $n \geq m$  jobs, job j has processing time  $t_j$ .

- A job must run contiguously on one machine.
- A machine can process at most one job at a time.

**Def**. Let S[i] be the subset of jobs assigned to machine i. The **load** of machine i is  $L[i] = \sum_{j \in S[i]} t_j$ .

**Def**. The **makespan** is the maximum load on any machine  $L = \max_i L[i]$ .

Load balancing. Assign each job to a machine to minimize makespan.

| 6 | a | а | d | f | f | f |   |
|---|---|---|---|---|---|---|---|
| 7 | b | С | С | е | g | g | g |

#### LOAD-BALANCE on 2 machines is NP-hard

**Claim**. Load balancing is hard even if m=2 machines.

**Pf**. PARTITION  $\leq_P$  LOAD-BALANCE.

**Number Partitioning Problem**. [Exercise 8.26] You are given positive integers  $x_1,...,x_n$ ; you want to decide whether the numbers can be partitioned into two sets  $S_1$  and  $S_2$  with the same sum:  $\sum_{x_i \in S_1} x_i = \sum_{x_i \in S_2} x_j$ .

Hint: SUBSET-SUM ≤<sub>P</sub> PARTITION

| 6 | a | а | d | f | f | f |
|---|---|---|---|---|---|---|
| 6 | b | С | С | е | g | g |



#### LOAD-BALANCE: list scheduling

#### List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine i whose load is smallest so far.

```
LIST-SCHEDULING (m, n, t_1, t_2, ..., t_n)
```

- 1. FOR i = 1..m:
  - 1. L[i] = 0;
  - 2.  $S[i] = \emptyset$ ;
- 2. FOR j = 1..n:
  - 1.  $i = \arg\min_{k} L[k];$
  - 2.  $S[i] = S[i] \cup \{j\};$
  - 3.  $L[i] = L[i] + t_j$ ;
- 3. RETURN S[1], S[2], ..., S[m];

**Implementation**.  $O(n \log m)$  using a priority queue for loads L[k].

## Demo: list scheduling



Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- ullet Need to compare resulting solution with optimal makespan  $L^*$ .



Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan  $L^*$ .

**Lemma 1**. For all k: the optimal makespan  $L^* \geq t_k$ .

Pf. Some machine must process the most time-consuming job.

**Lemma 2**. The optimal makespan  $L^* \geq \frac{1}{m} \sum_k t_k$ . **Pf**.

- The total processing time is  $\sum_k t_k$ .
- One of m machines must do at least a 1/m fraction of total work.

Bottleneck machine. Machine that has highest load after dispatching.

**Theorem**. Greedy algorithm is a 2-approximation.

**Pf**. Consider load L[i] of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load.
  - Its load before assignment is  $L[i]-t_j$ ; hence  $L[i]-t_j \leq L[k]$  for all  $1 \leq k \leq m$ .



**Theorem**. Greedy algorithm is a 2-approximation.

**Pf**. Consider load L[i] of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load.
  - Its load before assignment is  $L[i]-t_j$ ; hence  $L[i]-t_j \leq L[k]$  for all  $1 \leq k \leq m$ .
- Sum inequalities over all k and divide by m:

$$L[i] - t_j \leq rac{1}{m} \sum_k L[k] = rac{1}{m} \sum_k t_k \leq L^*$$

ullet Now,  $L=L[i]=\underbrace{(L[i]-t_j)}_{\leq L^*}+\underbrace{t_j}_{\leq L^*}\leq 2L^*.$ 

#### Greedy for LOAD-BALANCE: tightness

Q. Is our analysis tight?

A. Essentially yes.

**Ex**: m machines, first m(m-1) jobs have length 1, last job has length \$\$m.



- ullet list scheduling makespan =19=2m-1
- optimal makespan = 10 = m

#### Load balancing: LPT rule

**Longest processing time (LPT)**. Sort n jobs in *decreasing* order of processing times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING 
$$(m, n, t_1, t_2, ..., t_n)$$

- 1. SORT jobs and renumber so that  $t_1 \geq t_2 \geq ... \geq t_n$ .
- 2. FOR i = 1..m:
  - 1. L[i] = 0;
  - 2.  $S[i] = \emptyset$ ;
- 3. FOR j = 1..n:
  - 1.  $i = \arg\min_{k} L[k];$
  - 2.  $S[i] = S[i] \cup \{j\};$
  - 3.  $L[i] = L[i] + t_i$ ;
- 4. RETURN S[1], S[2], ..., S[m];

## LPT for Load balancing: analysis

**Observation**. If bottleneck machine i has only 1 job, then optimal.

Pf. Any solution must schedule that job.

**Lemma 3**. If there are more than m jobs,  $L^* \geq 2t_{m+1}$ .

**Pf**. Consider processing times of first m+1 jobs  $t_1 \geq t_2 \geq ... \geq t_{m+1}$ .

- Each takes at least t<sub>m+1</sub> time.
- ullet There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs.

**Theorem**. LPT rule is a 3/2-approximation algorithm.

Pf. [ similar to proof for list scheduling ]

- Consider load L[i] of bottleneck machine i.
- Let j be last job scheduled on machine i.
  - lacksquare assuming machine i has at least 2 jobs, we have  $j \geq m+1$

$$ullet$$
 Now,  $L=L[i]=\underbrace{(L[i]-t_j)}_{\leq L^*}+\underbrace{t_j}_{\leq rac{1}{2}L^*}\leq rac{3}{2}L^*.$ 

### LPT for Load balancing: analysis

 $\mathbf{Q}$ . Is our 3/2 analysis tight?

A. No.

**Theorem**. [Graham 1969] LPT rule is a 4/3-approximation.

Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?

A. Essentially yes.

#### Ex.

- m machines, n=2m+1 jobs
- 2m jobs of length m, m + 1, ..., 2m-1 and one more job of length m.
- ullet Then,  $L/L^* = ((m+(2m-1))+m)/(((3m-1)*m+m)/m) = (4m-1)/(3m)$



## **Center selection**

#### Center selection problem

**Input**. Set of n sites  $s_1,...,s_n$  and an integer k>0.

**Center selection problem**. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.





#### Center selection problem

**Input**. Set of n sites  $s_1, ..., s_n$  and an integer k > 0.

**Center selection problem**. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.

#### Notation.

- dist(x, y) = distance between sites x and y.
- $dist(s_i, C) = \min_{c \in C} dist(s_i, c)$  = distance from  $s_i$  to closest center.
- $r(C) = \max_{i} dist(s_i, C)$  = smallest covering radius.

**Goal**. Find set of centers C that minimizes r(C), subject to |C|=k.

#### Distance function properties.

- [ identity ] dist(x, x) = 0
- [ symmetry ] dist(x, y) = dist(y, x)
- [ triangle inequality ]  $dist(x,y) \leq dist(x,z) + dist(z,y)$

## Center selection: example

**Ex**: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!





#### Greedy algorithm: a false start

**Greedy algorithm**. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Ex. two seperated cluster of sites.

### Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

GREEDY-CENTER-SELECTION  $(k, n, s_1, s_2, ..., s_n)$ 

- 1.  $C = \emptyset$ ;
- 2. REPEAT k times
  - 1. Select a site  $s_i$  with maximum distance  $dist(s_i, C)$ ;
  - 2.  $C = C \cup s_i$ ;
- 3. RETURN C;

**Property**. Upon termination, all centers in C are pairwise at least r(C) apart.

**Pf**. By construction,  $r(C) = \max_i dist(s_i, C)$  = maximum distance  $dist(s_i, C)$ .



### Greedy for center selection: analysis

**Lemma**. Let  $C^*$  be an optimal set of centers. Then  $r(C) \leq 2r(C^*)$ . **Pf**. [by contradiction] Assume  $\frac{1}{2}r(C) > r(C^*) := r$ .

- For each site  $c_i \in C$ , draw a ball of radius r around it.
- Consider a site s covered by  $c_i \in C$ , with  $dist(s, c_i) > 2r$ .
  - $c_i$  covered by  $C^*$ : let  $c_i^*$  be the center paired with  $c_i$ .
  - ullet If s covered by  $c_i^*$ , then  $dist(s,c_i)>2r\geq dist(s,c_i^*)+dist(c_i^*,c_i)!$
  - ullet Otherwise, by farthest selection rule,  $dist(s,c_j)>2r, orall c_j\in C.$ 
    - $\circ$  Need k center to cover  $c_i \in C$ , not possible to cover s.



#### Center selection

**Lemma**. Let  $C^*$  be an optimal set of centers. Then  $r(C) \leq 2r(C^*)$ .

**Theorem**. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

**Question**. Is there hope of a 3/2-approximation? 4/3?

#### DOMINATING-SET $\leq_P$ CENTER-SELECTION

**Theorem**. Unless  $\mathcal{P} = \mathcal{NP}$ , there no  $\rho$ -approximation for center selection problem for any  $\rho < 2$ .

**Pf**. We show how we could use a  $(2-\epsilon)$ -approximation algorithm for CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

**DOMINATING-SET**. Each *vertex* is adjacent to at least one member of the DOMINATING-SET, as opposed to each *edge* being incident to at least one member of the VERTEX-COVER.

#### DOMINATING-SET $\leq_P$ CENTER-SELECTION

**Theorem**. Unless  $\mathcal{P} = \mathcal{NP}$ , there no  $\rho$ -approximation for center selection problem for any  $\rho < 2$ .

**Pf**. We show how we could use a  $(2-\epsilon)$ -approximation algorithm for CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

- Let G = (V, E), k be an instance of DOMINATING-SET.
- Construct instance G' of CENTER-SELECTION with sites V and distances
  - $ullet dist(u,v)=1 ext{ if } (u,v)\in E$
  - dist(u,v)=2 if  $(u,v)\notin E$
- Note that G' satisfies the triangle inequality.
- G has dominating set of size k iff there exists k centers  $C^*$  with  $r(C^*) = 1$ .
- Thus, if G has a dominating set of size k, a  $(2-\epsilon)$ -approximation algorithm for CENTER-SELECTION would find a solution  $C^*$  with  $r(C^*)=1$  since it cannot use any edge of distance 2.

# Pricing method: weighted vertex cover

#### Weighted vertex cover

**Definition**. Given a graph G = (V, E), a **vertex cover** is a set  $S \subseteq V$  such that each edge in E has at least one end in S.

**Weighted vertex cover**. Given a graph G = (V, E) with vertex weights  $w_i \ge 0$ , find a vertex cover of minimum weight.



How to define "progress" in this setting?

- small weight  $w_i$ .
- · cover lots of elements.

#### **Greedy method**

How to define "progress" in this setting?

- small weight  $w_i$ .
- cover lots of elements.

**Option 1**.  $w_i/|S_i|$ : "cost per element covered".

**Option 2**.  $w_i/|S_i \cap R|$ : we are only concerned with elements still left uncovered.

### **Greedy method**

How to define "progress" in this setting?

- small weight  $w_i$ .
- cover lots of elements.

**Option 1**.  $w_i/|S_i|$ : "cost per element covered".

**Option 2**.  $w_i/|S_i \cap R|$ : we are only concerned with elements still left uncovered.

Greedy algorithm. Assignment.

**Greedy analysis**.  $O(\log d^*)$ -approximation,  $d^* = \max_i |S_i|$ . Assignment.



#### **Pricing method**

**Pricing method**. Each edge must be covered by some vertex. Edge e=(i,j) pays price  $p_e\geq 0$  to use both vertex i and j.

**Fairness**. Edges incident to vertex i should pay  $\leq w_i$  in total.

• ie.  $\sum_{e=(i,j)} p_e \leq w_i$ 



Fairness lemma. For any vertex cover S and any fair prices  $p_e: \sum_e p_e \leq w(S)$ . Pf.  $\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i \leq w(S)$ .

#### Pricing algorithm

WEIGHTED-VERTEX-COVER (G, w)

- 1.  $S = \emptyset$ ;
- 2. FOREACH  $e \in E$ :  $p_e = 0$ ;
- 3. WHILE (there exists an edge (i, j) such that neither i nor j is tight)
  - 1. Select such an edge e = (i, j);
  - 2. Increase  $p_e$  as much as possible until i or j tight;
- 4. S = set of all tight nodes;
- 5. RETURN S;

tight. 
$$\sum_{e=(i,j)} p_e = w_i$$

## Pricing method: example





#### Pricing method: analysis

**Theorem**. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER. **Pf**.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm.
  - S is a vertex cover: if some edge (i, j) is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let  $S^*$  be optimal vertex cover. We show  $w(S) \leq 2w(S^*)$ .

$$egin{aligned} w(S) &= \sum_{i \in S} w_i & ext{all nodes tight} \ &= \sum_{i \in S} \sum_{e = (i,j)} p_e & S \subseteq V \ &\leq \sum_{i \in V} \sum_{e = (i,j)} p_e & ext{edge counted twice} \ &= 2 \sum_{e \in E} pe \leq 2w(S^*) & ext{fairness lemma} \end{aligned}$$

## LP rounding: weighted vertex cover

## Weighted vertex cover

**Definition**. Given a graph G = (V, E), a **vertex cover** is a set  $S \subseteq V$  such that each edge in E has at least one end in S.

**Weighted vertex cover**. Given a graph G = (V, E) with vertex weights  $w_i \ge 0$ , find a vertex cover of minimum weight.



## Weighted vertex cover: ILP formulation

Weighted vertex cover. Given a graph G = (V, E) with vertex weights  $w_i \ge 0$ , find a vertex cover of minimum weight.

#### Integer linear programming formulation.

- Model inclusion of each vertex i using a 0/1 variable  $x_i$ .
  - Vertex covers in 1–1 correspondence with 0/1 assignments:  $S=\{i\in V: x_i=1\}.$
- Objective function: minimize  $\sum_i w_i x_i$ .
- For every edge (i, j), must take either vertex i or j (or both):  $x_i + x_j \ge 1$ .



# ILP formulation in math language

Weighted vertex cover. Integer linear programming formulation.

$$( ext{ILP}) egin{array}{ll} \min & \sum_{i \in V} w_i x_i \ & ext{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \ & x_i \in \{0,1\} & i \in V \end{array}$$

**Observation**. If  $x^*$  is optimal solution to ILP, then  $S=\{i\in V: x_i^*=1\}$  is a minweight vertex cover.



# Integer linear programming

Given integers  $a_{ij}$ ,  $b_i$ ,  $c_j$ , find integers  $x_j$  that satisfy:

$$egin{aligned} \min c^T x \ & ext{s.t. } Ax \geq b \ & ext{} x \geq 0 \ & ext{} x ext{ is integral} \end{aligned} \qquad egin{aligned} \min \sum_{j=1}^n c_j x_j \ & ext{} & ext{} x_j \geq b_i \end{aligned} \qquad 1 \leq i \leq m \ & ext{} x_j \geq 0 \qquad 1 \leq j \leq n \ & ext{} x_j ext{ is integral} \end{aligned} \qquad 1 \leq j \leq n$$

**Observation**. Vertex cover formulation proves that INTEGER-PROGRAMMING is an NP-hard optimization problem.

## linear programming

Given integers  $a_{ij}$ ,  $b_i$ ,  $c_j$ , find real numbers  $x_j$  that satisfy:

$$egin{aligned} \min c^T x \ & ext{s.t. } Ax \geq b \ & ext{} x \geq 0 \end{aligned} \qquad egin{aligned} \min \sum_{j=1}^n c_j x_j \ & ext{} x_j \geq b_i \quad 1 \leq i \leq m \end{aligned}$$

**Linear**. No  $x^2$ , xy,  $\arccos(x)$ , x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.

Ellipsoid algorithm. [Khachiyan 1979] Can solve LP in poly-time.

# LP feasible region

LP geometry in 2D.





## Weighted vertex cover: LP relaxation

Linear programming relaxation.

$$\begin{array}{llll} \text{(ILP)} & \min & \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in \\ & x_i \in \{0,1\} & i \in \end{array} & \begin{array}{lll} \text{(LP)} & \min & \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \\ & x_i \geq 0 & i \in V \end{array}$$



## Weighted vertex cover: LP relaxation

Linear programming relaxation.

$$\begin{array}{llll} \text{(ILP) min} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in \\ & x_i \in \{0,1\} & i \in \end{array} & \text{s.t.} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \\ & x_i \geq 0 & i \in V \end{array}$$

**Observation**. Optimal value of LP is  $\leq$  optimal value of ILP, ie. better. **Pf**. LP has fewer constraints.

**Note**. LP solution  $x^*$  may not correspond to a vertex cover. (even if all weights are 1)



## Weighted vertex cover: LP relaxation

Linear programming relaxation.

$$\begin{array}{llll} \text{(ILP) min} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in \\ & x_i \in \{0,1\} & i \in \end{array} & \text{s.t.} & \displaystyle \sum_{i \in V} w_i x_i \\ & \text{s.t.} & x_i + x_j \geq 1 & (i,j) \in E \\ & x_i \geq 0 & i \in V \end{array}$$

**Observation**. Optimal value of LP is  $\leq$  optimal value of ILP, ie. better. **Pf**. LP has fewer constraints.

**Note**. LP solution  $x^*$  may not correspond to a vertex cover. (even if all weights are 1)



Q. How can solving LP help us find a low-weight vertex cover?

**A**. Solve LP and round fractional values in  $x^*$ .

## LP rounding algorithm

**Lemma**. If  $x^*$  is optimal solution to LP, then  $S = i \in V : x_i^* \ge \frac{1}{2}$  is a vertex cover whose weight is at most twice the min possible weight.

**Pf**. [ S is a vertex cover ]

- Consider an edge  $(i,j) \in E$ .
- Since  $x_i^* + x_j^* \geq 1$ , either  $x_i^* \geq \frac{1}{2} or x_j^* \geq \frac{1}{2}$  (or both)  $\Rightarrow (i,j)$  covered.

**Pf**. [ S has desired weight ]

- Let S\* be optimal vertex cover. Then
  - ullet  $\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq rac{1}{2} \sum_{i \in S} w_i$

## LP rounding algorithm

**Lemma**. If  $x^*$  is optimal solution to LP, then  $S = i \in V : x_i^* \ge \frac{1}{2}$  is a vertex cover whose weight is at most twice the min possible weight.

**Pf**. [ S is a vertex cover ]

- Consider an edge  $(i,j) \in E$ .
- Since  $x_i^* + x_j^* \geq 1$ , either  $x_i^* \geq \frac{1}{2} or x_j^* \geq \frac{1}{2}$  (or both)  $\Rightarrow (i,j)$  covered.

**Pf**. [ S has desired weight ]

- Let S\* be optimal vertex cover. Then
  - $lacksquare \sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq rac{1}{2} \sum_{i \in S} w_i$

**Theorem**. The rounding algorithm is a 2-approximation algorithm.

Pf. Lemma + fact that LP can be solved in poly-time.



# Weighted vertex cover inapproximability

**Theorem**. [Dinur–Safra 2004] If  $\mathcal{P} \neq \mathcal{NP}$ , then no  $\rho$ -approximation algorithm for WEIGHTED-VERTEX-COVER for any  $\rho < 1.3606$  (even if all weights are 1).

Open research problem. Close the gap.

**Theorem**. [Kohot–Regev 2008] If Unique Games Conjecture is true, then no  $(2 - \epsilon)$ -approximation algorithm for WEIGHTED-VERTEX-COVER for any  $\epsilon > 0$ .

Open research problem. Prove the Unique Games Conjecture.



# Generalized load balancing

## Generalized load balancing

**Input**. Set of m machines M; set of n jobs J.

- Job  $j \in J$  must run contiguously on an *authorized machine* in  $M_j \subseteq M$ .
- Job  $j \in J$  has processing time  $t_j$ .
- Each machine can process at most one job at a time.

**Def**. Let  $J_i$  be the subset of jobs assigned to machine i.

The **load** of machine i is  $L_i = \sum_{j \in J_i} t_j$ .

**Def**. The **makespan** is the maximum load on any machine =  $\max_i L_i$ .

**Generalized load balancing**. Assign each job to an authorized machine to minimize makespan.



# Integer linear program and relaxation

**ILP formulation**.  $x_{ij}$  = time that machine i spends processing job j.

$$egin{array}{ll} ext{(ILP) min} & L \ & ext{s.t.} & \sum_i x_{ij} = t_j & orall j \in J \ & \sum_j x_{ij} \leq L & orall i \in M \ & x_{ij} \in \{0,t_j\} & orall j \in J, i \in M_j \ & x_{ij} = 0 & orall j \in J, i 
otin M_j \end{array}$$

LP relaxation.

$$egin{array}{ll} ext{(LP) min} & L \ & ext{s.t.} & \sum_i x_{ij} = t_j & orall j \in J \ & \sum_i x_{ij} \leq L & orall i \in M \ & ext{} & ext$$

### Lower bounds

**Lemma 1**. The optimal makespan  $L^* \geq \max_j t_j$ .

Pf. Some machine must process the most time-consuming job.

**Lemma 2**. Let L be optimal value to the LP. Then, optimal makespan  $L^* \geq L$ .

Pf. LP has fewer constraints than ILP formulation.

### Structure of LP solution

**Lemma 3**. Let x be solution to LP. Let G(x) be the graph with an edge between machine i and job j if  $x_{ij} > 0$ . Then G(x) is acyclic. **Pf**. (deferred)



Why a job can connect to multiple machines?

LP solution may break the job into small fractions.



## Generalized LB: rounding

**Rounded solution**. Find LP solution x where G(x) is a forest. Root forest G(x) at some *arbitrary* machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to any one of its children.

**Lemma 4**. Rounded solution only assigns jobs to authorized machines. **Pf**. If job j is assigned to machine i, then  $x_{ij} > 0$ . LP solution can only assign positive value to authorized machines.



# Generalized LB: analysis

**Lemma 5**. If job j is a leaf node and machine i = parent(j), then  $x_{ij} = t_j$ . **Pf**.

- Since j is a leaf,  $x_{ij} = 0$  for all  $k \neq parent(j)$ .
- LP constraint guarantees  $\sum_i x_{ij} = t_j$ .

**Lemma 6**. At most one non-leaf job is assigned to a machine. **Pf**. The only possible non-leaf job assigned to machine i is parent(i).





# Generalized LB: analysis

**Theorem**. Rounded solution is a 2-approximation. **Pf**.

- Let J(i) be the jobs assigned to machine i.
- By LEMMA 6, the load  $L_i$  on machine i has two components:
  - ullet parent:  $t_{parent(i)} \leq L^*$  (LEMMA 1)
  - leaf nodes:

$$egin{aligned} \sum_{j \in J(i)} t_j &= \sum_{j \in J(i)} x_{ij} & ext{LEMMA 5} \ &\leq \sum_{j \in J} x_{ij} \leq L & ext{LP} \ &\leq L^* & ext{LEMMA 2} \end{aligned}$$

• Thus, the overall load  $L_i \leq 2L^*$ .

## Generalized LB: flow formulation

#### Flow formulation of LP.

$$egin{aligned} \sum_i x_{ij} &= t_j & orall j \in J \ \sum_j x_{ij} &\leq L & orall i \in M \ x_{ij} &\geq 0 & orall j \in J, i \in M_j \ x_{ij} &= 0 & orall j \in J, i 
otin M_j \end{aligned}$$



**Observation**. Solution to feasible flow problem with value L are in 1-to-1 correspondence with LP solutions of value L.



## Generalized LB: structure of solution

**Lemma 3**. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if  $x_{ij} > 0$ . We can find another solution (x', L) such that G(x') is acyclic.

**Pf**. Let C be a cycle in G(x).

- Augment flow along the cycle C (maintain conservation).
- At least one edge from C is removed (and none are added).
- Repeat until G(x') is acyclic.



## Conclusions

**Running time**. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

**Remark**. Can solve LP using flow techniques on a graph with m + n + 1 nodes: given L, find feasible flow if it exists. Binary search to find  $L^*$ .

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes  $t_{ij}$  time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- If  $\mathcal{P} \neq \mathcal{NP}$ , then no no  $\rho$ -approximation exists for any  $\rho < 3/2$ .

# Knapsack problem

**PTAS**.  $(1 + \epsilon)$ -approximation algorithm for any constant  $\epsilon > 0$ .

- Load balancing. [Hochbaum–Shmoys 1987]
- Euclidean TSP. [Arora, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.



## Knapsack problem

#### Knapsack problem.

- Given n objects and a knapsack.
- Item i has value  $v_i > 0$  and weighs  $w_i > 0$ .
- Knapsack has weight limit W.
- Goal: fill knapsack so as to maximize total value.

**Ex**:  $\{3, 4\}$  has value 40.

| item | value | weight |
|------|-------|--------|
| 1    | 1     | 1      |
| 2    | 6     | 2      |
| 3    | 18    | 5      |
| 4    | 22    | 6      |
| 5    | 28    | 7      |

## Knapsack is NP-complete

**SUBSET-SUM**. Given a set X, values  $u_i \geq 0$ , and an integer U, is there a subset  $S \subseteq X$  whose elements sum to exactly U?

**KNAPSACK**. Given a set X, weights  $w_i \geq 0$ , values  $v_i \geq 0$ , a weight limit W, and a target value V, is there a subset  $S \subseteq X$  such that:

$$\sum_{i \in S} w_i \leq W, \sum_{i \in S} v_i \leq V$$

**Theorem**. SUBSET-SUM  $\leq_P$  KNAPSACK.

**Pf**. Given instance  $(u_1,..,u_n,U)$  of SUBSET-SUM, create KNAPSACK instance:

$$egin{aligned} v_i &= w_i &= u_i & \sum_{i \in S} u_i \leq U \ V &= W &= U & \sum_{i \in S} u_i \leq U \end{aligned}$$

## Knapsack problem: DP I

**Def**.  $OPT(i, w) = \max \text{ value subset of items } 1, ..., i \text{ with } weight \text{ limit } w$ .

Case 1. OPT does not select item i.

• OPT selects best of 1, ..., i-1 using up to weight limit w.

Case 2. OPT selects item i.

- New weight limit = w − w<sub>i</sub>.
- OPT selects best of 1,..,i-1 using up to weight limit  $w-w_i$ .

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

**Theorem**. Computes the optimal value in O(nW) time.

· Not polynomial in input size.

Polynomial in input size if weights are small integers.

## Knapsack problem: DP II

**Def**.  $OPT(i, v) = \min$  weight of a knapsack for which we can obtain a solution of  $value \ge v$  using a subset of items 1, ..., i.

**Note**. Optimal value is the largest value v such that  $OPT(n, v) \leq W$ .

Case 1. OPT does not select item i.

• OPT selects best of 1, ..., i-1 that achieves value  $\geq v$ .

Case 2. OPT selects item i.

- Consumes weight  $w_i$ , need to achieve value  $\geq v v_i$ .
- OPT selects best of 1, ..., i-1 that achieves value  $\geq v-v_i$ .

$$OPT(i,v) = \left\{ \begin{array}{ll} 0 & \text{if } v \leq 0 \\ \infty & \text{if } i = 0 \text{ and } v > 0 \\ \min\{OPT(i-1,v), w_i + OPT(i-1,v-v_i)\} & \text{otherwise} \end{array} \right.$$

## Knapsack problem: DP II (cont.)

**Theorem**. Dynamic programming algorithm II computes the optimal value in  $O(n^2v_{max})$  time, where  $v_{max}$  is the maximum of any value. **Pf**.

- ullet The optimal value  $V^* \leq n v_{max}$ .
- There is one subproblem for each item and for each value  $v \leq v_{max}$ .
- It takes O(1) time per subproblem.

Remark 1. Not polynomial in input size! (pseudo-polynomial)

Remark 2. Polynomial time if values are small integers.



#### Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm II on rounded/scaled instance.
- Return optimal items in rounded instance.

| item | value    | weight |
|------|----------|--------|
| 1    | 934221   | 1      |
| 2    | 5956342  | 2      |
| 3    | 17810013 | 5      |
| 4    | 21217800 | 6      |
| 5    | 27343199 | 7      |

| item | value | weight |
|------|-------|--------|
| 1    | 1     | 1      |
| 2    | 6     | 2      |
| 3    | 18    | 5      |
| 4    | 22    | 6      |
| 5    | 28    | 7      |

#### Round up all values:

- $0 < \epsilon \le 1$  = precision parameter.
- v<sub>max</sub> = largest value in original instance.
- $\theta$  = scaling factor =  $\epsilon v_{max}/2n$ .

$$ar{v_i} = \lceil rac{v_i}{ heta} 
ceil heta, \hat{v_i} = \lceil rac{v_i}{ heta} 
ceil$$

**Observation**. Optimal solutions to problem with  $\bar{v}$  are equivalent to optimal solutions to problem with  $\hat{v}$ .

**Intuition**.  $\bar{v}$  close to v so optimal solution using  $\bar{v}$  is nearly optimal;  $\hat{v}$  small and integral so dynamic programming algorithm II is fast.

**Theorem**. If S is solution found by rounding algorithm and  $S^*$  is any other feasible solution satisfying weight constraint, then  $(1+\epsilon)\sum_{i\in S}v_i\geq \sum_{i\in S^*}v_i$ **Pf**.

$$\sum_{i \in S^*} v_i \leq \sum_{i \in S^*} ar{v}_i$$

round up

$$\leq \sum_{i = c} ar{v_i}$$

optimality

$$\leq \sum_{i \in S} (v_i + heta) \qquad ext{ rounding gap}$$

$$\leq \sum v_i + n heta \qquad |S| \leq n$$

$$=\sum_{i\in S}v_i+rac{1}{2}\epsilon v_{max}$$
  $heta=\epsilon v_{max}/2n$ 

$$\leq (1+\epsilon)\sum_{i\in S} v_i \qquad v_{max} \leq 2\sum_{i\in S} v_i$$



**Theorem**. For any  $\epsilon > 0$ , the rounding algorithm computes a feasible solution whose value is within a  $(1 + \epsilon)$  factor of the optimum in  $O(n^3/\epsilon)$  time. **Pf**.

- We have already proved the accuracy bound.
- Dynamic program II running time is  $O(n^2 \hat{v}_{max})$ , where

$$\hat{v}_{max} = \lceil rac{v_{max}}{ heta} 
ceil = \lceil rac{2n}{\epsilon} 
ceil$$

