Algorithm II

10. Extending Tractability

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Coping with \mathcal{NP} -completeness

- **Q**. Suppose I need to solve an \mathcal{NP} -complete problem. What should I do?
- A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of \mathcal{NP} -complete problems.

Vertex cover

Given a graph G=(V,E) and an integer k, is there a subset of vertices $S\subseteq V$ such that $|S|\leq k$, and for each edge (u,v) either $u\in S$ or $v\in S$ or both?

Q. VERTEX-COVER is \mathcal{NP} -complete. But what if k is small?

Brute force. $O(kn^{k+1})$.

- Try all $C(n,k) = O(n^k)$ subsets of size k.
- Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to $O(2^k kn)$.

Q. VERTEX-COVER is \mathcal{NP} -complete. But what if k is small?

Brute force. $O(kn^{k+1})$.

- Try all $C(n,k) = O(n^k)$ subsets of size k.
- Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to $O(2^k kn)$.

Ex. n = 1000, k = 10.

Brute. $kn^{k+1} = 10^{34} \Rightarrow \text{infeasible}$.

Better. $2^k kn = 10^7 \Rightarrow$ feasible.

Remark. If k is a constant, then the algorithm is poly-time; if k is a small constant, then it's also practical.

Claim. Let (u, v) be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G - \{u\}$ and $G - \{v\}$ has a vertex cover of size $\leq k - 1$.

Pf. \Rightarrow Suppose G has a vertex cover S of size $\leq k$.

- S contains either u or v (or both). Assume it contains u.
- $S \{u\}$ is a vertex cover of $G \{u\}$.

Pf. \Leftarrow Suppose S is a vertex cover of $G - \{u\}$ of size $\leq k - 1$.

• Then $S \cup \{u\}$ is a vertex cover of G.

Claim. Let (u, v) be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G - \{u\}$ and $G - \{v\}$ has a vertex cover of size $\leq k - 1$.

Pf. \Rightarrow Suppose G has a vertex cover S of size $\leq k$.

- S contains either u or v (or both). Assume it contains u.
- $S \{u\}$ is a vertex cover of $G \{u\}$.

Pf. \Leftarrow Suppose S is a vertex cover of $G - \{u\}$ of size $\leq k - 1$.

• Then $S \cup \{u\}$ is a vertex cover of G.

Claim. If G has a vertex cover of size k, it has $\leq k(n-1)$ edges. **Pf**. Each vertex covers at most n-1 edges.

Finding small vertex covers: algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^kkn)$ time.

```
Vertex-Cover(G,k)
```

- 1. if (G contains no edges) return true;
- 2. if (G contains $\geq kn$ edges) return false;
- 3. let (u, v) be any edge of G;
 - 1. $a = Vertex-Cover(G \{u\}, k-1);$
 - 2. $b = Vertex-Cover(G \{v\}, k-1);$
- 4. return (a or b);

Pf.

- Correctness follows from previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes O(kn) time.

Finding small vertex covers: recursion tree

$$T(n,k) = \left\{ egin{array}{ll} c & ext{if } k=0 \ cn & ext{if } k=1 \Rightarrow T(n,k) \leq 2^k ckn \ 2T(n,k-1) + ckn & ext{if } k>1 \end{array}
ight.$$

Solving NP-hard problems on trees

Independent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of nodes such that no two are adjacent.

Fact. A tree has at least one node that is a leaf (degree = 1).

Key observation. If node v is a leaf, there exists a max-cardinality independent set containing v.

Pf. [exchange argument]

- Consider a max-cardinality independent set S.
- If $v \in S$, we're done.
- Otherwise, let (u, v) denote the lone edge incident to v.
 - if $u \notin S$ and $v \notin S$, then $S \cup \{v\}$ is independent $\Rightarrow S$ not maximum
 - if $u \in S$ and $v \notin S$, then $S \cup \{v\} \{u\}$ is independent

IS on trees: greedy

Theorem. The greedy algorithm finds a max-cardinality independent set in forests (and hence trees).

INDEPENDENT-SET-IN-A-FOREST(F)

- 1. $S = \emptyset$;
- 2. WHILE (F has at least 1 edge)
 - 1. Let v be a leaf node and let (u, v) be the lone edge incident to v;
 - 2. $S = S \cup \{v\};$
 - 3. $F = F \{u, v\};$
- 3. RETURN $S \cup$ nodes remaining in F;

Remark. Can implement in O(n) time by maintaining nodes of degree 1 in postorder.

Demo: greedy for IS on trees

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights $w_v \geq 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u or OPT includes all leaf nodes incident to u.

Dynamic-programming solution. Root tree at some node, say r.

- $OPT_{in}(u)$ = max-weight IS in subtree rooted at u, including u.
- $OPT_{out}(u)$ = max-weight IS in subtree rooted at u, excluding u.
- Goal: $\max\{OPT_{in}(r), OPT_{out}(r)\}$.

Bellman equation.

$$OPT_{in}(u) = w_u + \sum_{v \in children(u)} OPT_{out}(v)$$
 $OPT_{out}(u) = \sum_{v \in children(u)} \max\{OPT_{in}(v), OPT_{out}(v)\}$

Weighted IS on trees: DP

Theorem. The DP algorithm computes max weight of an independent set in a tree in O(n) time.

note: can also find independent set itself (not just value)

```
WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)
```

- 1. Root the tree T at any node r;
- 2. $S = \emptyset$;
- 3. FOREACH (node u of T in postorder/topological order)
 - 1. IF (u is a leaf node)
 - 1. $M_{in}[u] = w_u$; $M_{out}[u] = 0$;
 - 2. ELSE
 - 1. $M_{in}[u] = w_u + \sum_{v \in children(u)} M_{out}[v];$
 - 2. $M_{out}[u] = \sum_{v \in children(u)} \max\{M_{in}[v], M_{out}[v]\};$
- 4. RETURN $\max\{M_{in}[r], M_{out}[r]\};$

NP-hard problems on trees: intuition

Independent set on trees. Tractable because we can find a node that *breaks the* communication among the subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:

- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

Circular arc coverings

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. \mathcal{NP} -complete, even on rings.

Brute force. Can determine if k colors suffice in $O(k^m)$ time by trying all k-colorings.

Goal. $O(f(k)) \cdot poly(m, n)$ on rings.

Review: interval coloring

Interval coloring (partitioning). Greedy algorithm finds coloring such that number of colors equals depth of schedule.

Depth. Maximum number that pass over any single point on the time-line.

С	С		d	d		f	f		j	j
b	b	b	b	b		g	g		i	i
a	a		е	е	е	е	h	h	h	h

Circular arc coloring.

- Weak duality: number of colors ≥ depth.
- Strong duality does not hold.

(Almost) transforming coloring

Circular arc coloring. Given a set of n arcs with depth $d \le k$, can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v_1 and v_n . The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that "sliced" arcs have the same color.

Circular arc coloring: DP

Dynamic programming algorithm.

- Assign distinct color to each interval which begins at cut node v_0 .
- At each node v_i , some intervals may finish, and others may begin.
 - Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1} .
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.

Circular arc coloring: running time

Running time. $O(k! \cdot n)$.

- The algorithm has n phases.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most k intervals through v_i, so there are at most k! colorings to consider.

Remark. This algorithm is practical for small values of k (say k = 10) even if the number of nodes n (or paths) is large.

Vertex cover in bipartite graphs

Vertex cover

Given a graph G=(V,E) and an integer k, is there a subset of vertices $S\subseteq V$ such that $|S|\leq k$, and for each edge (u,v) either $u\in S$ or $v\in S$ or both?

Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover. Then, $|M| \leq |S|$. Pf. Each vertex can cover at most one edge in any matching.

König-Egerváry Theorem

Theorem. [König-Egerváry] In a *bipartite* graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

König-Egerváry Theorem: proof

Theorem. [König-Egerváry] In a *bipartite* graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that |M| = |S|.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.

König-Egerváry Theorem: proof (cont.)

Theorem. [König-Egerváry] In a *bipartite* graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that |M| = |S|.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.
- Define $L_A=L\cap A, L_B=L\cap B, R_A=R\cap A, R_B=R\cap B.$
- Claim 1. $S = L_B \cup R_A$ is a vertex cover.
 - ullet consider $(u,v)\in E$
 - $u \in L_A, v \in R_B$ impossible since infinite capacity
 - ullet thus, either $u\in L_B$ or $v\in R_A$ or both
- Claim 2. |M| = |S|.
 - max-flow min-cut theorem $\Rightarrow |M| = cap(A, B)$
 - only edges of form (s, u) or (v, t) contribute to cap(A, B)
 - $|M| = cap(A, B) = |L_B| + |R_A| = |S|$.