Algorithm Il

10. Extending Tractability

WU Xiaokun 2885

xkun.wu [at] gmail

Coping with N’/P-completeness

Q. Suppose | need to solve an A’P-complete problem. What should | do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

« Solve problem to optimality.
« Solve problem in polynomial time.
» Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.

i

Finding small vertex covers

Vertex cover

Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V

such that |S| < k, and for each edge (u,v) either uw € S or v € S or both?

L

i

|;'. .-_.I

()

o

S,

i

Finding small vertex covers
Q. VERTEX-COVER is NP-complete. But what if k is small?
Brute force. O(kn*"!).

e Tryall C'(n, k) = O(n") subsets of size k.
 Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to O(2"kn).

i

Finding small vertex covers
Q. VERTEX-COVER is NP-complete. But what if k is small?
Brute force. O(kn*"!).

e Tryall C'(n, k) = O(n") subsets of size k.
 Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to O(2"kn).

Ex. n = 1000, k = 10.
Brute. kn"'! = 10* = infeasible.
Better. 2"kn = 107 = feasible.

Remark. If k is a constant, then the algorithm is poly-time, if & is a small constant,
then it's also practical.

i

Finding small vertex covers

Claim. Let (u,v) be an edge of G. G has a vertex cover of size < k iff at least one of
G — {u} and G — {v} has a vertex cover of size < k — 1.

Pf. = Suppose G has a vertex cover S of size < k.

« S contains either u or v (or both). Assume it contains .
e § — {u} is a vertex cover of G — {u}.

Pf. <= Suppose S is a vertex cover of G — {u} of size < k — 1.

« Then S U {u} is a vertex cover of G.

i

Finding small vertex covers

Claim. Let (u,v) be an edge of G. G has a vertex cover of size < k iff at least one of
G — {u} and G — {v} has a vertex cover of size < k — 1.

Pf. = Suppose G has a vertex cover S of size < k.

« S contains either u or v (or both). Assume it contains .
e § — {u} is a vertex cover of G — {u}.

Pf. <= Suppose S is a vertex cover of G — {u} of size < k — 1.

« Then S U {u} is a vertex cover of G.

Claim. If G has a vertex cover of size k, it has < k(n — 1) edges.
Pf. Each vertex covers at most n — 1 edges.

i

Finding small vertex covers: algorithm

Claim. The following algorithm determines if G has a vertex cover of size < k in
O(2Fkn) time.

Vertex—Cover(G, k)

1. if (G contains no edges) return true;
2. if (G contains > kn edges) return false;
3. let (u,v) be any edge of G;
1. a=Vertex-Cover(G — {u}, k — 1),
2.b=Vertex-Cover(G — {v}, k — 1);
4. return (a or b);

Pf.

» Correctness follows from previous two claims.
« There are < 2! nodes in the recursion tree; each invocation takes O(kn) time.

Finding small vertex covers: recursion tree

c itk =0
Tiri. k) =14 &0 ifk =1= T(n,k) < 2%kn
2T (n,k —1)+ckn ifk>1

Solving NP-hard problems on trees

i

Independent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of nodes such
that no two are adjacent.

Fact. Atree has at least one node that is a leaf (degree /_Q
=:1) o &
[™
Key observation. If node v is a leaf, there exists a max- ;,Qfl\i‘*
cardinality independent set containing v. OMCIRC)
&

Pf. [exchange argument]

« Consider a max-cardinality independent set S.

e Ifv € S, we're done.

« Otherwise, let (u, v) denote the lone edge incident to v.
wifudé Sand v ¢ S, then S U {v} is independent = S not maximum
«ifuec Sand v ¢ S, then S U {v} — {u} is independent

i

IS on trees: greedy

Theorem. The greedy algorithm finds a max-cardinality independent set in forests
(and hence trees).

INDEPENDENT-SET-IN-A-FOREST(L')
1.8 =1
2. WHILE (F has at least 1 edge)

1. Let v be a leaf node and let (u, v) be the lone edge incident to v;
2.8 = §uiv};

3. F =F — {u,v};
3. RETURN S U nodes remaining in F,

Remark. Can implement in O(n) time by maintaining nodes of degree 1 in postorder.

i

Demo: greedy for IS on trees

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, > 0, find
an independent set S that maximizes » |, ¢ w,.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT
includes v or OFPT includes all leaf nodes incident to w.

Dynamic-programming solution. Root tree at some node, say r.

« OPT;,(u) = max-weight IS in subtree rooted at u, including u.

» OPT,y(u) = max-weight IS in subtree rooted at u, excluding u.
e Goal: max{OPT;,(r), OPT,.(r)}.

Bellman equation.

i

OPTin(u) =

OPTyu(u) =

wat+ Y, OPTou(v)

vechildren(u)

2

vechildren (u)

max{OPT;,(v),OPT,u(v)}

o O¥g
O @20

i

Weighted IS on trees: DP

Theorem. The DP algorithm computes max weight of an independent set in a tree in
O(n) time.

» note: can also find independent set itself (not just value)
WEIGHTED-INDEPENDENT-SET-IN-A-TREE (1)

1. Root the tree T' at any node r,
2.8 =0;
3. FOREACH (node u of T" in postorder/topological order)
1. IF (u is a leaf node)
1. Min[ﬂ] = Wy, Mout [HI = 0,
2. ELSE
1. Min[u] = w, + Evl‘é::hffdren[u} Moyt [v];

2. ﬂ’fﬂuf [“L-:l - Zt’ﬁchﬂdi‘fﬂ{u] max{Mm [v]"ﬂ{wf{ﬂ]}:
4. RETURN max{ M;,[r|, Myu|r]};

i

NP-hard problems on trees: intuition

Independent set on trees. Tractable because we can find a node that breaks the
communication among the subproblems in different subtrees.

A
i
W O
® ® @

of

Graphs of bounded tree width. Elegant generalization of trees that:

» Captures a rich class of graphs that arise in practice.
« Enables decomposition into independent pieces.

i

Circular arc coverings

Ed

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs)

to share a portion of a fiber optic cable, provided they are transmitted using different
wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. N’/P-complete, even on rings. _—

time by trying all k-colorings.

@ |
1 .”'.|I1 |
Goal. O(f(k)) - poly(m,n) on rings. \\ /

1 M " - ':.-' I:}:,I-_:.-"f 7 ' i .-l.'*._
Brute force. Can determine if k colors suffice in O(k™) ;‘_f' | \\

Review: interval coloring

Interval coloring (partitioning). Greedy algorithm finds coloring such that number
of colors equals depth of schedule.

« Depth. Maximum number that pass over any single point on the time-line.

cC C d d f
b b b b b g g
a a e e e e h

Circular arc coloring.

» Weak duality: number of colors > depth.
« Strong duality does not hold.

i

(Almost) transforming coloring

Circular arc coloring. Given a set of n arcs with depth d < k, can the arcs be
colored with & colors?

Equivalent problem. Cut the network between nodes v, and v,,. The arcs can be
colored with & colors iff the intervals can be colored with k colors in such a way that
“sliced” arcs have the same color.

¥i W Wy Wy Vi Wi

Circular arc coloring: DP

Dynamic programming algorithm.

« Assign distinct color to each interval which begins at cut node wy.
« Al each node v;, some intervals may finish, and others may begin.
= Enumerate all k-colorings of the intervals through v»; that are consistent with
the colorings of the intervals through v; ;.
« The arcs are k-colorable iff some coloring of intervals ending at cut node vy is
consistent with original coloring of the same intervals.

:. a ke ares qa ?ES e PR, - -
e’ [4 e "
o b f f b*
i d d £ e
o 3 8 - 4
I | I 1 F

|,';’|I J ||r i I.b”

L4

¢
}:1 : :_:f : :c'

i

Circular arc coloring: running time
Running time. O(k! - n).

« The algorithm has n phases.

« Botileneck in each phase is enumerating all consistent colorings.

« There are at most k intervals through v;, so there are at most k! colorings to
consider.

Remark. This algorithm is practical for small values of k (say k = 10) even if the
number of nodes n (or paths) is large.

Vertex cover in bipartite graphs

Vertex cover

Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V

such that |S| < k, and for each edge (u,v) either uw € S or v € S or both?

L

i

|;'. .-_.I

()

o

S,

i

Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover. Then, |M| < |§|.
Pf. Each vertex can cover at most one edge in any matching.

i

Konig-Egervary Theorem

Theorem. [KOnig-Egervary] In a bipartite graph, the max cardinality of a matching is
equal to the min cardinality of a vertex cover.

i

Konig-Egervary Theorem: proof

Theorem. [KOnig-Egervary] In a bipartite graph, the max cardinality of a matching is
equal to the min cardinality of a vertex cover.

« Suffices to find matching M and cover S such that |[M| = |S].

« Formulate max flow problem as for bipartite matching.
« Let M be max cardinality matching and let (A, B) be min cut.

i

Konig-Egervary Theorem: proof (cont.)

Theorem. [KOnig-Egervary] In a bipartite graph, the max cardinality of a matching is
equal to the min cardinality of a vertex cover.

« Suffices to find matching M and cover S such that |M| = |S].
« Formulate max flow problem as for bipartite matching.
« Let M be max cardinality matching and let (A, B) be min cut.
e DefineLy=LNALg=LNB,Ry=RNA,Rg=RNB.
e Claim1. 5 = Ly U R, is a vertex cover.

= consider (u,v) € E

» u € Ly, v € Rp impossible since infinite capacity

= thus, eitheru € Lg or v € R4 or both
e Claim2. |M| = |S]|.

= max-flow min-cut theorem = |M| = cap(A, B)

= only edges of form (s, u) or (v,t) contribute to cap(A, B)

* |M| = cap(A, B) = |Lp| + |Ra| = |S|.

