Algorithm Il

8. Intractability 1l

WU Xiaokun 2885

xkun.wu [at] gmail

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?

A. Sacrifice one of three desired features.

» 1. Solve arbitrary instances of the problem.
« 2. Solve problem to optimality.
» 3. Solve problem in polynomial time.

i

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?

A. Sacrifice one of three desired features.

» 1. Solve arbitrary instances of the problem.
« 2. Solve problem to optimality.
» 3. Solve problem in polynomial time.

Coping strategies.

« 1. Design algorithms for special cases of the problem.
2. Design approximation algorithms or heuristics.
« 3. Design algorithms that may take exponential time.

i

Special cases: trees

i

Independent set on trees

Independent set on trees. Given a tree, find a max-
cardinality subset of nodes that no two are adjacent.

Fact. Atree has at least one leaf node (degree = 1).

Key observation. If node v is a leaf, there exists a max-
cardinality independent set containing v.

i

Independent set on trees

Independent set on trees. Given a tree, find a max-
cardinality subset of nodes that no two are adjacent.

Fact. Atree has at least one leaf node (degree = 1).

Key observation. If node v is a leaf, there exists a max-
cardinality independent set containing v.

Pf. [exchange argument]

« Consider a max-cardinality independent set S.

e fv € S, we're done.

» Otherwise, let (u, v) denote the lone edge incident to v.
wjfudg Sandv ¢ S, then S U {v} is independent = S not maximum
sffuec Sandv ¢ S, then S U {v} — {u} is independent

i

IS on trees: greedy

INDEPENDENT-SET-IN-A-FOREST(F)

1.5 =0;

2. WHILE (F has at least 1 edge)
1. Let v be a leaf node and let (u, v) be the lone edge incident to v;
2.8 =8 U1}
3. F=F — {u,v},

3. RETURN S U nodes remaining in F';

i

IS on trees: greedy

INDEPENDENT-SET-IN-A-FOREST(F)

1.5 =0;

2. WHILE (F has at least 1 edge)
1. Let v be a leaf node and let (u, v) be the lone edge incident to v;
2.8 =8 U1}
3. F=F — {u,v},

3. RETURN S U nodes remaining in F';

Theorem. The greedy algorithm finds a max-cardinality independent set in forests
(and hence trees).

Remark. Can implement in O(n) time by maintaining nodes of degree 1.

i

Demo: greedy for IS on trees

i

Quiz: greedy for IS

How might the greedy algorithm fail if the graph is not a tree/forest?

A. Might get stuck.

B. Might take exponential time.

C. Might produce a suboptimal independent set.
D. Any of the above.

i

Quiz: greedy for IS

How might the greedy algorithm fail if the graph is not a tree/forest?

A. Might get stuck.
B. Might take exponential time.

C. Might produce a suboptimal independent set.
D. Any of the above.

A. the algorithm relies on leave nodes.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, > 0, find
an independent set S that maximizes > ¢ w,.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, > 0, find
an independent set S that maximizes > ¢ w,.

Greedy algorithm can fail spectacularly.

e hint: when w, is huge.

i

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, > 0, find
an independent set S that maximizes » |, ¢ w,.

Dynamic-programming solution. Root tree at some node, say r.

» OPT;, (u) = max-weight IS in subtree rooted at u, including u.
« OPT,,;(u) = max-weight IS in subtree rooted at u, excluding u.
e Goal: max{OPT;,(r), OPT,u(r)}.

Bellman equation. %)
OPEH(H) = Wy o Z OPTUM (U] O .
vechildren(u) (4) \O
OPT,ulu) = max{OPT;,(v), OPTyu (v
W= Y max{OPTi(v), OPTou(v)} wgam

vechildren(u)

Quiz: DP for Weighted IS

In which order to solve the subproblems?

A. Preorder.

B. Postorder.

C. Level order.

D. Any of the above.

Quiz: DP for Weighted IS

In which order to solve the subproblems?

A. Preorder.
B. Postorder.

C. Level order.
D. Any of the above.

B. the algorithm relies on leave nodesensures a node is processed after all of its
descendants.

i

Weighted IS on trees: DP

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T')

1. Root the tree T' at any node r;
2.8 =0
3. FOREACH (node u of T" in postorder/topological order)
1. IF (u is a leaf node)
1. M, ‘H, = Wy ; Moyt ’ul = 0;
2. ELSE
1. ﬂfi’in u = Wy + Z;:s;‘shﬂdrf:n[u} ﬂ{ﬂﬂ-‘ ’1;];
2. Moyt [“] == Ztr-':'chéidren{u] max{Mi" [U]" ﬂfﬂ’“f{v]}’
4. RETURN max{M;,[r], Myu[r|};

i

Weighted IS on trees: DP

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T')

1. Root the tree T at any node r;

2.8 =0,
3. FOREACH (node u of T" in postorder/topological order)

1. IF (u is a leaf node)
1. M, ‘H, = Wy ; Moyt ’ul = 0;
2. ELSE
1. ﬂfi’in u = Wy + Z;:s;‘shﬂdrm[u} ‘ﬂ'{mﬂ ’1;];
2. Myy|u] = Z;.-E.:-héidre-n{u] max{ M [v], Mou[v]};
4. RETURN max{M;, [r], Mou[r]};

Theorem. The DP algorithm computes max weight of an independent set in a tree in
O(n) time.

Note: can also find independent set itself (not just value)

NP-hard problems on trees: intuition

Independent set on trees. Tractable because we can find a node that breaks the
communication among the subproblems in different subtrees.

A
"IN

W O
® ® @

i

Special cases: planarity

i

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two
edges cross.

AN A
VAN

K; is nonplanar K3 ; is nonplanar

planar

Applications. VLSI circuit design, computer graphics, etc.

Planarity testing

Theorem. [Hopcroft-Tarjan 1974] There exists an O(n) time algorithm to determine
whether a graph is planar.

i

Problems on planar graphs

Fact 0. Many graph problems can be solved faster in planar graphs.
EX. Shortest paths, max flow, MST, matchings, efc.

Fact 1. Some NP-complete problems become tractable in planar graphs.
Ex. MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, etc.

Fact 2. Other NP-complete problems become easier in planar graphs.
Ex. INDEPENDENT-SET, VERTEX-COVER, TSP, STEINER-TREE, efc.

i

Planar graph 3-colorability

PLANAR-3-COLOR. Given a planar graph, can it be colored using 3 colors so that
no ftwo adjacent nodes have the same color?

1]

Planar map 3-colorability

PLANAR-MAP-3-COLOR. Given a planar map, can it be colored using 3 colors so
that no two adjacent regions have the same color?

i

Planar map 3-colorability

PLANAR-MAP-3-COLOR. Given a planar map, can it be colored using 3 colors so
that no two adjacent regions have the same color?

1]

Theorem: =p

Theorem. PLANAR-3-COLOR =p PLANAR-MAP-3-COLOR.
Pf sketch.

« Nodes correspond to regions.
« Two nodes are adjacent iff they share a nontrivial border.

PLANAR-3-COLOR € NP-complete

Theorem. PLANAR-3-COLOR & NP-complete.
Pf.

« Easy to see that PLANAR-3-COLOR & NP.
 We show 3-COLOR <p PLANAR-3-COLOR.
» Given 3-COLOR instance &G, we construct an instance of PLANAR-3-COLOR

that is 3-colorable iff G is 3-colorable.

i

PLANAR-3-COLOR € NP-complete: gadget

Lemma. W is a planar graph such that:

« [n any 3-coloring of W, opposite corners have the same color.
« Any assignment of colors to the corners in which opposite corners have the same
color extends to a 3-coloring of W'.

Pf. The only 3-colorings (modulo permutations) of W are shown below.

/&“a /&K

h*@ ﬂ_ﬂﬁ\ e
@\l —r— \I v/ e

\‘@/

PLANAR-3-COLOR € NP-complete: lemma

Construction. Given instance G of 3-COLOR, draw & in plane, letting edges cross.
Form planar G’ by replacing each edge crossing with planar gadget W'

Lemma. G is 3-colorable iff G' is 3-colorable.

« In any 3-coloring of W,a # a' and b # b'.
e If a # a' and b # b’ then can extend to a 3-coloring of W.

(),

L)

L]
e 8
®.
r

& ErbA R g

i

PLANAR-3-COLOR € NP-complete: lemma

Construction. Given instance G of 3-COLOR, draw & in plane, letting edges cross
Form planar G’ by replacing each edge crossing with planar gadget W'

Lemma. G is 3-colorable iff G' is 3-colorable.

« In any 3-coloring of W,a # a' and b # b'.
e If a # a' and b # b’ then can extend to a 3-coloring of W.

i

Planar map k-colorability

Theorem. [Appel-Haken 1976] Every planar map is 4-colorable.

« Resolved century-old open problem.
» Used 50 days of computer time to deal with many special cases.
« First major theorem to be proved using computer.

RFSFARCH ANNOUNCEMENTS
EVERY FLANAR MAP IS FOUR COLORANLE!

WY E. AR ANTT W HAEFR
Fomom mbsel by Bukeed Fiosey |y Th #5978
Tihir dpdl v dp g i i =
s, Frpr plana man a0 o ioend willl & moir e cokor,

—_—
—
=

Planar map k-colorability

Theorem. [Appel-Haken 1976] Every planar map is 4-colorable.

« Resolved century-old open problem.
» Used 50 days of computer time to deal with many special cases.
 First major theorem to be proved using computer.

RFSFARCH ANNOUNCEMENTS
EVERY FLANAR MAP IS FOUR COLORANLE!

WYKL RPER 47T W HAKER
Fomom mbsel by Bukeed Fiosey |y Th #5978

T tpdl o dp Hop e i =

s, Frpr plana man a0 o ioend willl & moir e cokor,

Remarks.

« Appel-Haken yields O(n*) algorithm to 4-color of a planar map.
« Best known: O(n?) to 4-color; O(n) to 5-color.
» Determining whether 3 colors suffice is NP-complete.

NP-hard: Poly-time special cases

Trees. VERTEX-COVER, INDEPENDENT-SET, LONGEST-PATH, GRAPH-
ISOMORPHISM, etc.

Bipartite graphs. VERTEX-COVER, INDEPENDENT-SET, 3-COLOR, EDGE-
COLOR, etc.

Planar graphs. MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR,
etc.

Bounded treewidth. HAM-CYCLE, INDEPENDENT-SET, GRAPH-ISOMORPHISM,
elc.

Small integers. SUBSET-SUM, KNAPSACK, PARTITION, etc.

i

Approximation algorithms: vertex
cover

Approximation algorithms
p-approximation algorithm.

» Runs in polynomial time.
» Applies to arbitrary instances of the problem.
« (uaranteed to find a solution within ratio p of true optimum.

Ex. Given a graph G, can find a vertex cover that uses < 2 - OPT'(G) vertices in
O(m + n) time.

Approximation algorithms
p-approximation algorithm.

» Runs in polynomial time.
» Applies to arbitrary instances of the problem.
« (Guaranteed to find a solution within ratio p of true optimum.

Ex. Given a graph G, can find a vertex cover that uses < 2 - OPT'(G) vertices in
O(m + n) time.

Challenge. Need to prove a solution’s value is close to optimum value, without even
Knowing what optimum value is!

Vertex cover
VERTEX-COVER. Given a graph G = (V, E), find a min-size vertex cover.

« for each edge (u,v) € E: eitheru € S, v € S, or both

& (J O @
& { C> -]

) L @ 2
® ® G

s
s
& !
i
Nl

i

Vertex cover: greedy

GREEDY-VERTEX-COVER(G)

1.8 =0E"=FE,
2. WHILE (E' 4 0)

1. Let (u,v) € E’ be an arbitrary edge;

2. M =M U {(u,v)};

3.8 =S U {u}u{v}

4. Delete from E' all edges incident to either u or v,
3. RETURN S,

i

Vertex cover: greedy

GREEDY-VERTEX-COVER(G)

1.8 =0E"=FE,
2. WHILE (E' 4 0)

1. Let (u,v) € E’ be an arbitrary edge;

2. M =M U {(u,v)};

3.8 =S U {u}u{v}

4. Delete from E' all edges incident to either u or v,
3. RETURN S,

Running time. Can be implemented in O(m + n) time.

i

Demo: Greedy Vertex-Cover

i

Quiz: Vertex cover

Given a graph G, let M be any matching and let S be any vertex cover. Which of the
following must be true?

A. M| <|S
B.|S|<|M
C.|S|=|M
D. None of the above.

i

Quiz: Vertex cover

Given a graph G, let M be any matching and let S be any vertex cover. Which of the
following must be true?

A. M| <|S
B.|S|<|M
C.|S|=|M
D. None of the above.

A. if two nodes not matched, then they are not covered and conected, contra to
cover;, when covering nodes are matched to each other, strictly less.

Pf. Each vertex can cover at most one edge in any matching.

i

Vertex cover: 2-approximation

Theorem. Let S* be a minimum vertex cover. Then, greedy algorithm computes a
vertex cover S with | S| < 2|57| (ie. 2-approximation algorithm).
Pf.

« S isa vertex cover.

= (delete edge only after it's already covered)
« M is a matching.

= (when (u,v) added to M, all edges incident to either u or v are deleted)
« |S| =2|M| < 2|5*|.

= by design of algorithm, and “weak duality”

i

Vertex cover: 2-approximation

Theorem. Let S* be a minimum vertex cover. Then, greedy algorithm computes a
vertex cover S with | S| < 2|57| (ie. 2-approximation algorithm).
Pf.

« S isa vertex cover.

= (delete edge only after it's already covered)
« M is a matching.

= (when (u,v) added to M, all edges incident to either u or v are deleted)
« |S| =2|M| < 2|5*|.

= by design of algorithm, and “weak duality”

Corollary. Let M* be a maximum matching. Then, greedy algorithm computes a
matching M with |[M| > '2|M*|.
Pf. | M| = '4|S| > Y| M*|.

Vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P # NP, then no p-approximation for VERTEX-
COVER for any p < 1.3606.

Open research problem. Close the gap (1.3606, 2).

Conjecture. no p-approximation for VERTEX-COVER for any p < 2.

Approximation algorithms:
knapsack

i

Knapsack problem

Knapsack problem.

« (Given n objects and a knapsack.

 [tem 7 has value v; > 0 and weighs w; > 0.

« Knapsack has weight limit W .

« Goal: fill knapsack so as to maximize total value.

i

Knapsack problem

Knapsack problem.

« (Given n objects and a knapsack.

 [tem 7 has value v; > 0 and weighs w; > 0.

« Knapsack has weight limit W .

« Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

item value weight

1 1 1

2 6 2
3 18 5
A 22 6
5 28 7

Knapsack is NP-complete

KNAPSACK. Given a set X, weights w; > 0, values v; = 0, a weight limit W, and a
target value V', is there a subset S € X such that:

Zw,- < W,qu; <V
icS icS

i

Knapsack is NP-complete

KNAPSACK. Given a set X, weights w; > 0, values v; = 0, a weight limit W, and a
target value V', is there a subset S € X such that:

Y wi<W,Y u<V
=) i€S

SUBSET-SUM. Given a set X, values u; > 0, and an integer U, is there a subset
S C X whose elements sum to exactly U ?

Theorem. SUBSET-SUM < p KNAPSACK.
Pf. Given instance (uy, .., u,, U) of SUBSET-SUM, create KNAPSACK instance:

v = Wy = Uy E U; ﬂ U

ieS

V=W=U) w<U

ieS

Knapsack problem: DP |

Def. OPT'(i, w) = max value subset of items 1, .., with weight limit w.

i

Knapsack problem: DP |
Def. OPT'(i, w) = max value subset of items 1, .., with weight limit w.
Case 1. OFT does not select item i.
e« OPT selects best of 1, ... 7 — 1 using up to weight limit w.
Case 2. OPT selects item i.
 New weight limit = w — w;.

« OPT selects best of 1,..,7 — 1 using up to weight limit w — w;.

0 ife =10
OFT(i,w) =< OPT(i—1,w) ifw;, >w
max{OPT (i — 1,w),v; + OPT(i — 1,w — w;)} otherwise

i

Knapsack problem: DP |
Def. OPT'(i, w) = max value subset of items 1, .., with weight limit w.
Case 1. OFT does not select item i.
e OPT selects best of 1, .., 7 — 1 using up to weight limit w.
Case 2. OPT selects item i.
 New weight limit = w — w;.

« OPT selects best of 1,..,7 — 1 using up to weight limit w — w;.

0 ife =10
OFT(i,w) =< OPT(i—1,w) ifw;, >w
max{OPT (i — 1,w),v; + OPT(i — 1,w — w;)} otherwise
Theorem. Computes the optimal value in O(nW) time.

« Not polynomial in input size.

i

« Polynomial in input size if weights are small integers.

i

Knapsack problem: DP Il

Def. OPT'(i,v) = min weight of a knapsack for which we can obtain a solution of
value > v using a subset of items 1, .., 2.

Note. Optimal value is the largest value v such that OPT'(n,v) < W.

i

Knapsack problem: DP Il

Def. OPT'(i,v) = min weight of a knapsack for which we can obtain a solution of
value > v using a subset of items 1, .., 2.

Note. Optimal value is the largest value v such that OPT (n,v) < W.
Case 1. OPT does not select item 3.

» OPT selects best of 1,..,7 — 1 that achieves value > v.
Case 2. OFPT selects item z.

« Consumes weight w;, need to achieve value > v — v;.
e OPT selects best of 1,..,7 — 1 that achieves value > v — v;.

0 ifv <0
OPI(i,v) =4{ o0 ifi =0andv >0
min{OPT'(i — 1,v),w; + OPT'(i — 1,v — v;)} otherwise

Knapsack problem: DP Il (cont.)

Theorem. Dynamic programming algorithm Il computes the optimal value in

O(n*v,,,,) time, where v,,,,. is the maximum of any value.
Pf.

« The optimal value V* < nv,u..

» There is one subproblem for each item and for each value v < v,,,..
e It takes O(1) time per subproblem.

i

Knapsack problem: DP Il (cont.)

Theorem. Dynamic programming algorithm Il computes the optimal value in

O(n*v,,,,) time, where v,,,,. is the maximum of any value.
Pf.

« The optimal value V* < nv,u..

» There is one subproblem for each item and for each value v < v,,,,-
e It takes O(1) time per subproblem.

Remark 1. Not polynomial in input size! (pseudo-polynomial)
Remark 2. Polynomial time if values are small integers.

Poly-time approximation scheme

Intuition for approximation algorithm.

« Round all values up to lie in smaller range.
« Run dynamic programming algorithm |l on rounded/scaled instance.
« Return optimal items in rounded instance.

item value weight item value weight
1 934221 1 1 1 1
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7

i

Poly-time approximation scheme
Round up all values:

e 0 < e < 1 = precision parameter.
* Ve = l@rgest value in original instance.
 § = scaling factor = ev,./2n.

Observation. Optimal solutions to problem with © are equivalent to optimal solutions
to problem with v.

Intuition. v close to v so optimal solution using v is nearly optimal; v small and
integral so dynamic programming algorithm Il is fast.

i

Poly-time approximation scheme

Theorem. If S is solution found by rounding algorithm and S* is any other feasible
solution satisfying weight constraint, then (1 +€) > . cvi = > ¢ ;.

Pf. Z i Z 7,

tES*

= (vi +0)
s

=
< Z v; + nb
ieS

1
— E v; + Efvmrm*
icS

{_: '[:]. + E) Z Uy
icS

round up
optimality
rounding gap

S| <n

0 = €EVmaxr l,/2ﬂ,

Umax E 2 E L
=S

i

Poly-time approximation scheme

Theorem. For any € > 0, the rounding algorithm computes a feasible solution whose

value is within a (1 + €) factor of the optimum in O(n* /¢) time.
Pf.

« We have already proved the accuracy bound.
« Dynamic program Il running time is O(n*0,,q,), Where

Umaz —
P '3

a Umaz 2n
l=[—]

Exponential algorithms: 3-SAT

Exact exponential algorithms

Complexity theory deals with worst-case behavior.

« |nstances you want to solve may be “easy.”

“For every polynomial-time algorithm you have, there is an exponential
algorithm that | would rather run.” — Alan Perlis

Exact algorithms for 3-satisfiability

Brute force. Given a 3-SAT instance with n variables and m clauses, the brute-force
algorithm takes O((m + n)2") time.
Pf.

« There are 2" possible truth assignments to the n variables.
« We can evaluate a truth assignment in O(m + n) time.

i

3-satisfiability: recursive

A recursive framework. A 3-SAT formula ® is either empty or the disjunction of a
clause (I; Vv I, v l3) and a 3-SAT formula ®’ with one fewer clause.

‘i": (El UIEUI;;];‘UI*’
= (L A®)YV (la AD®')V (I3 A D)
= (®'|l; = true) V (®'|l2 = true) V (®'|l3 = true)

Notation. ®|z = true is the simplification of ® by setting « to true.

i

3-satisfiability: recursive

A recursive framework. A 3-SAT formula ® is either empty or the disjunction of a
clause (I, v I, Vv l3) and a 3-SAT formula ®" with one fewer clause.

‘I": (El vsgvfg)ﬁ@‘t
= LAYV (ILA®)V (I3NP)
= (®'|l; = true) V (®'|ly = true) vV (¥'|l3 = true)

Notation. ®|z = true is the simplification of ® by setting = to true.
EX.

b=(zvyVv-z) ANMzV-yVvVz)A(wVyV-z)
P’ =
(®'|z = true) =

AN—zVyV z)
AMzV-yvVz)AN(wVyV-z) A(-zVyVz)

AlwVyV-z) Aly V z)

3-satisfiability: algorithm

A recursive framework. A 3-SAT formula @ is either empty or the disjunction of a
clause (I, Vv I, V l3) and a 3-SAT formula ® with one fewer clause.

i

3-satisfiability: algorithm

A recursive framework. A 3-SAT formula ® is either empty or the disjunction of a
clause (I; Vv I, v l3) and a 3-SAT formula ®’ with one fewer clause.

3-SAT (P)

1. IF @ is empty RETURN true,

2. (flﬂfgvf:j}ﬂ‘i" =g

3. IF 3-saT (®'|l; = true) RETURN true;
4. |F 3-352T (®'|l, = true) RETURN ftrue;
5.IF 2=saT (®'|l3 = true) RETURN true;
6. RETURN false;

i

3-satisfiability: algorithm

A recursive framework. A 3-SAT formula ® is either empty or the disjunction of a
clause (I; Vv I, v l3) and a 3-SAT formula ®’ with one fewer clause.

3-SAT (P)

1. IF @ is empty RETURN true,

2. (flﬂfgvf:j}ﬂ‘i" =g

3. IF 3-saT (®'|l; = true) RETURN true;
4. |F 3-352T (®'|l, = true) RETURN ftrue;
5.IF 2=saT (®'|l3 = true) RETURN true;
6. RETURN false;

Theorem. The brute-force 3-SAT algorithm takes O(poly(n)3™) time.
Pt. T'(n) < 3T (n — 1) + poly(n).

3-satisfiability: algorithm Il
Key observation. The cases are not mutually exclusive. Every satisfiable
assignment containing clause (I; v I, Vv l3) must fall into one of 3 classes:

o [1 IS true.
e [, is false; I, is true.
e |1 is false; s is false, l5 iS true.

i

3-satisfiability: algorithm Il

Key observation. The cases are not mutually exclusive. Every satisfiable
assignment containing clause (I; v I, Vv l3) must fall into one of 3 classes:

o [1 IS true.
e [, is false; I, is true.
e |1 is false; s is false, l5 iS true.

3-SAT (P)

1. IF @ is empty RETURN true;

2. (flvfgvfg}ﬂ@’ =P

3. IF 3-35aT (®'|l; = true) RETURN true;

4. |F 2-saT (@'|l = false,ls = true) RETURN true;

5.IF 2-sa7 (®'|l; = false,ly = false,ly = true) RETURN true;
6. RETURN false;

i

3-satisfiability: theoretical

Theorem. The brute-force algorithm takes O(1.84") time.
Pt. T(n) <Tn—1)4+T(n—-2)+T(n—3)+O0(m+n).

e 1.847largestrootof r* = r? +r + 1

Theorem. [Moser and Scheder 2010] There exists a O(1.33334™) deterministic
algorithm for 3-SAT.

Exact algorithms for satisfiability
DPPL algorithm. Highly-effective backiracking procedure.

 Splitting rule: assign truth value to literal; solve both possibilities.
« Unit propagation: clause contains only a single unassigned literal.
« Pure literal elimination: if literal appears only negated or unnegated.

Satisfiability: best known
Chaff. State-of-the-art SAT solver.

« Solves real-world SAT instances with ~ 10K variable.
= Developed at Princeton by undergrads.

Exponential algorithms: TSP

Pokemon Go

Given the locations of n Pokémon, find shortest tour to collect them all.

Map: Where to catch
123 Pokémon in e

San Francisco

i

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour
oflength < D ?

13,509 cities in the United States

o hiip://www.math.uwaterloo.ca/tsp

i

HAM-CYCLE <p TSP

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour
of length < D ?

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle that
visits every node exactly once?

Theorem. HAM-CYCLE <, TSP.
Pf.

 Given an instance G = (V, E) of HAM-CYCLE, create n = |V| cities with
distance function

(1 if(u,v) €E
d{“*’”)_{ 2 if[E,E}g;E

» TSP instance has tour of length < n iff G has a Hamilton cycle.

i

Exponential algorithm for TSP: DP

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n*2") time.
Pf. [dynamic programming]

« Subproblems: ¢(s, v, X) = cost of cheapest path between s and v # s that visits
every node in X exactly once (and uses only nodes in X).

e Goal: min,cy ¢(s,v, V) + ¢(v, s)

« There are < n2" subproblems and they satisfy the recurrence:

c(v, s) if | X| =2

ﬂ(s.l > X) B { miﬂui—:ﬁ”'-.{s.:r} G(S! i, X\{ﬂ}) T [’,‘[‘H, U] if |X| > 2

« The values ¢(s, v, X) can be computed in increasing order of the cardinality of X

i

Exponential algorithm for TSP: DP

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n*2") time.
Pf. [dynamic programming]

« Subproblems: ¢(s, v, X) = cost of cheapest path between s and v # s that visits
every node in X exactly once (and uses only nodes in X).

e Goal: min,cy ¢(s,v, V) + ¢(v, s)

« There are < n2" subproblems and they satisfy the recurrence:

c(v, s) if | X| =2

ﬂ(s.l > X) B { miﬂui—:ﬁ”'-.{s.:r} G(S! i, X\{ﬂ}) T [’,‘[‘H, U] if |X| > 2

« The values c(s, v, X) can be computed in increasing order of the cardinality of X

Remark. 22-city TSP instance takes 1,000 years!

i

Concorde TSP solver
Concorde TSP solver. [Applegate-Bixby-Chvatal-Cook]

e Linear programming + branch-and-bound + polyhedral combinatorics.
« Greedy heuristics, including Lin-Kernighan.
« MST, Delaunay triangulations, fractional b-matchings, etc.

Remarkable fact. Concorde has solved all 110 TSPLIB instances.

« largest instance has 85,900 cities!

i

Euclidean TSP

Euclidean TSP. Given n points in the plane and a real number L, is there a tour that
visit every city exactly once that has distance < L?

Fact. 3-SAT <p EUCLIDEAN-TSP.

Remark. Not known to be in NP.

i

Euclidean TSP

Euclidean TSP. Given n points in the plane and a real number L, is there a tour that
visit every city exactly once that has distance < L?

Fact. 3-SAT <p EUCLIDEAN-TSP.

Remark. Not known to be in NP.

Theorem. [Arora 1998, Mitchell 1999] Given n points in the plane, for any constant

e > 0: there exists a poly-time algorithm to find a tour whose length is at most (1 + €)
times that of the optimal tour.

Pf recipe. Structure theorem + divide-and-conquer + dynamic programming.

