Algorithm Il

8. Intractability i

WU Xiaokun 2885

xkun.wu [at] gmail

Recap: Poly-time reductions

constraint satisfaction

INDEPENDENT-5ET Dir-Ham-CyCLE 3-COLOR SUBSET-5UM

VERTEX-COVER Ham-CyCLE KnAPSACK

SET-COVER

packing and covering seguencing partitioning numerical

P vs. NP

i

D

Decision problem.

» Problem X is a set of strings.
e Instance s is one string.
 Algorithm A solves problem X:

A(s) = {

yes
no

ifse X
if s ¢ X

i

D

Decision problem.

« Problem X is a set of strings.
 Instance s is one string.
» Algorithm A solves problem X:

| yes ifse X
A[S}_{ no ifsé¢ X

Def. Algorithm A runs in polynomial time if for every string s, A(s) terminates in <
p(|s|) “steps,” where p(-) is some polynomial function.

Def. P = set of decision problems for which there exists a poly-time algorithm.

i

D

Decision problem.

« Problem X is a set of strings.
 Instance s is one string.
» Algorithm A solves problem X:

| yes ifse X
A[S}_{ no ifs¢ X

Def. Algorithm A runs in polynomial time if for every string s, A(s) terminates in <
p(|s|) “steps,” where p(-) is some polynomial function.

Def. P = set of decision problems for which there exists a poly-time algorithm.

Ex. PRIMES
e problem: {2, 3,5,7,11,13,17,19,23,29,31, ...}

i

e instance s: 592335744548702854681
« algorithm: Agrawal-Kayal-Saxena (2002)

i

Some problems in P

P. Decision problems for which there exists a poly-time algorithm.

problem

oly-time
description POty

MULTIPLE

REL-PRIME

PRIMES

EDIT-DISTANCE

L-SOLvE

U-Conw

algorithm

grade-school

I v 7 .
Is v a multiple of v division

Are r and v relatively prime ? Euclid’s algorithm

Agrawal-Kayal-

i ?
Is x prime ? Eavind

Is the edit distance between
; Mead|leman=-Wunsch
vand v less than 57

GCauss-Edmonds
elimination

Is there a vector i that
satisfies Ax = b7

Is an undirected graph

i connected? depth-first search

51, 17

34, 39

53

nmiether
neither

& =, -,

51, 16
34, 31
2l

acggat
ttttta

gl

A i::ﬂ
I::l"'{}

i

NP

Def. Algorithm C'(s, t) is a certifier for problem X if for every string s : s € X iff
there exists a string £ such that C(s,t) = yes.

Def. NP = set of decision problems for which there exists a poly-time certifier.

« C'(s,t) is a poly-time algorithm.
« Certificate ¢ is of polynomial size: [t| < p(|s|) for some polynomial p(-).

i

NP

Def. Algorithm C'(s, t) is a certifier for problem X if for every string s : s € X iff
there exists a string £ such that C(s,t) = yes.

Def. NP = set of decision problems for which there exists a poly-time certifier.

« C'(s,t) is a poly-time algorithm.
« Certificate ¢ is of polynomial size: [t| < p(|s|) for some polynomial p(-).

Ex. COMPOSITES

e problem: {4,6,8,9,10,12, 14, 15, 16, 18, 20, ...}
e instance s: 437669

« certificate ¢: 541 (437, 669 = 541 x 809)

« certifier C(s, t): grade-school division

i

Certifiers and certificates: satisfiability

SAT. Given a CNF formula &, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.
Certifier. Check that each clause in ¢ has at least one true literal.

EX.

e instance s: ¢ = [Il V x9 V E:_:',) N (:[.'1 Vg V 3:3] A\ {El Vs V E.i)
o certificate t. 1 = true, o = true, x3 = false, x4y = false

Conclusions. SAT € NP, 3-SAT € NP.

i

Certifiers and certificates: Hamilton path

HAMILTON-PATH. Given an undirected graph G = (V, E), does there exist a
simple path P that visits every node?

Certificate. A permutation 7 of the n nodes.

Certifier. Check that contains each node in V' exactly once, and that G contains
an edge between each pair of adjacent nodes.

Conclusion. HAMILTON-PATH € NP.

i

Some problems in NP

NP. Decision problems for which there exists a poly-time certifier.

poly-time
algorithm

description

Liouve Is there a vector Gauss-Edmonds |7 = | |] daide i
that satisfies Ar =47 elimination 0 3 15| |3 o 1) i
COMPOSITES I5 1 composite ? Agm;;:::wl_ 51 53
FACTOR e el 222 (56159, 50) (55687, 50)
255 tham v =T
SAT Civen a CNF formula, does it have 999 "-EI : “E : & -:- e 5 :
a satisfying truth assignment? mTeN e e o S
HAMILTON- Is there a simple path batween 00—
PATH » and v that visits every node? ?7? G'ﬁ-““-ﬂan 2 b o
L f] G- t})

i

P, NP, and EXP

P. Decision problems for which there exists a poly-time algorithm.
NP. Decision problems for which there exists a poly-time certifier.
EAXP. Decision problems for which there exists an exponential-time algorithm.

i

P, NP, and EXP

P. Decision problems for which there exists a poly-time algorithm.
NP. Decision problems for which there exists a poly-time certifier.
EAXP. Decision problems for which there exists an exponential-time algorithm.

Proposition. P € NP.
Pf. Consider any problem X € P.

« By definition, there exists a poly-time algorithm A(s) that solves X.
« Certificate t = ¢, certifier C(s,t) = A(s).

i

P, NP, and EXP

P. Decision problems for which there exists a poly-time algorithm.
NP. Decision problems for which there exists a poly-time certifier.
EAXP. Decision problems for which there exists an exponential-time algorithm.

Proposition. P € NP.
Pf. Consider any problem X € P.

« By definition, there exists a poly-time algorithm A(s) that solves X.
« Certificate t = ¢, certifier C(s,t) = A(s).

Proposition. NP C £XP.
Pf. Consider any problem X € NP.

« By definition, there exists a poly-time certifier C(s,t) for X, where certificate ¢
satisfies |t| < p(|s|) for some polynomial p(-).

« To solve instance s, run C(s,t) on all strings ¢ with |t| < p(]s]).

« Return yes iff C'(s,t) returns yes for any of these potential certificates.

i

P, NP, and EXP (cont.)

P. Decision problems for which there exists a poly-time algorithm.
NP. Decision problems for which there exists a poly-time certifier.
EAXP. Decision problems for which there exists an exponential-time algorithm.

Proposition. P C NP.
Proposition. N'P C £EXP.

Fact. P # EXP = either P # NP, or NP # EXP, or both.

i

The main question: P vs. NP

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?
Conjecture. No poly-time algorithm (ie. intractable) for 3-SAT.

The main question: P vs. NP

Does P = N'P? [Cook 1971, Edmonds, Levin, Yablonski, Godel] Is the decision
problem as easy as the certification problem?

« If yes: Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR, efc.
« If no: No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, elc.

Consensus opinion. Probably no.

i

Possible outcomes: P # NP

| conjecture that there is no good algorithm for the traveling salesman problem.
My reasons are the same as for any mathematical conjecture: (i) It is a

legitimate mathematical possibility and (ii) | do not know. — Jack Edmonds
1966

In my view, there is no way to even make intelligent guesses about the answer
to any of these questions. If | had to bet now, | would bet that P is not equal to
NP. | estimate the half-life of this problem at 25-50 more years, but | wouldn't

bet on it being solved before 2100. — Bob Tarjan (2002)

We seem to be missing even the most basic understanding of the nature of its
difficulty.... All approaches tried so far probably (in some cases, provably) have
failed. In this sense P = NP is different from many other major mathematical
problems on which a gradual progress was being constantly done (sometimes

for centuries) whereupon they yielded, either completely or partially. —
Alexander Razborov (2002)

i

Possible outcomes: P = NP

[think that in this respect | am on the loony fringe of the mathematical
community: | think (not too strongly!) that P = N'P and this will be proved
within twenty years. Some years ago, Charles Read and | worked on it quite bit,
and we even had a celebratory dinner in a good restaurant before we found an
absolutely fatal mistake. — Béla Bollobas (2002)

In my opinion this shouldn't really be a hard problem; it's just that we came late
to this theory, and haven't yet developed any techniques for proving
computations to be hard. Eventually, it will just be a footnote in the books. " —
John Conway

i

Other possible outcomes

P = NP, but only Q(n'") algorithm for 3-SAT.
P # NP, but with O(n log” n) algorithm for 3-SAT.
P = NP is independent (of ZFC axiomatic set theory).

It will be solved by either 2048 or 4096. | am currently somewhat pessimistic.
The outcome will be the truly worst case scenario: namely that someone will
prove P = NP because there are only finitely many obstructions to the

opposite hypothesis; hence there exists a polynomial time solution to SAT but
we will never know its complexity! — Donald Knuth

i

Millennium prize
Millennium prize. $1 million for resolution of P # NP problem.

« The Millennium Prize Problems are seven of the most well-known and important
unsolved problems in mathematics.
= https://brilliant.org/wiki/millennium-prize-problems/

» The prizes were announced at a meeting in Paris, held on May 24, 2000 at the
College de France.
» https:/iwww.claymath.org/millennium-problems/millennium-prize-problems

i

Princeton CS Building

—_

' 1 3

binary ASCIl chal
1010000 80 P
0111101 61 =
1001110 78 N
1010000 80 P
0111111 63 ?

NP-complete

Polynomial transformations

Def. Problem X polynomial (Cook) reduces o problem Y if arbitrary instances of
problem X can be solved using:

« Polynomial number of standard computational steps, plus
« Polynomial number of calls to oracle that solves problem Y.

i

Polynomial transformations

Def. Problem X polynomial (Cook) reduces o problem Y if arbitrary instances of
problem X can be solved using:

« Polynomial number of standard computational steps, plus
« Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any instance
x of X, we can construct an instance y of ¥ such that z is a yes instance of X iff y
IS a yes instance of Y.

» we require |y| to be of size polynomial in |z|

Note. Polynomial transformation is polynomial reduction with just one call to oracle
for Y, exactly at the end of the algorithm for X . Almost all previous reductions were
of this form.

i

Polynomial transformations

Def. Problem X polynomial (Cook) reduces o problem Y if arbitrary instances of
problem X can be solved using:

« Polynomial number of standard computational steps, plus
« Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any instance
x of X, we can construct an instance y of ¥ such that z is a yes instance of X iff y
IS a yes instance of Y.

» we require |y| to be of size polynomial in |z|

Note. Polynomial transformation is polynomial reduction with just one call to oracle
for Y, exactly at the end of the algorithm for X . Almost all previous reductions were
of this form.

Open question. Are these two concepts the same with respect to N'P?

i

NP-complete

NP-complete. A problem Y € NP with the property that for every problem X &
NP, X <pY.

« “hardest” NP problem.

i

NP-complete

NP-complete. A problem Y € NP with the property that for every problem X &
NP, X <pY.

« “hardest” NP problem.

Proposition. Suppose Y € N'P-complete. Then, Y € P iff P = NP,
Pf. < If P = NP, thenY € P because Y € N'P.
Pf. = Suppose Y € P.

« Consider any problem X € N'P.Since X <p Y, we have X € P.
« This implies NP C P.
« We already know P C NP. Thus P = NP.

i

NP-complete

NP-complete. A problem Y € NP with the property that for every problem X &
NP, X <pY.

« “hardest” NP problem.

Proposition. Suppose Y € N'P-complete. Then, Y € P iff P = NP,
Pf. < If P = NP, thenY € P because Y € N'P.
Pf. = Suppose Y € P.

« Consider any problem X € N'P.Since X <p Y, we have X € P.
« This implies NP C P.
« We already know P C NP. Thus P = NP.

Fundamental question. Are there any “natural” A’P-complete problems?

i

The “first” AN’/P-complete problem

Theorem. [Cook 1971, Levin 1973] CIRCUIT-SAT € N'P-complete.

I..-’
Output: | A

Inputs: (

1 0

Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem, others fall like
dominoes.

Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem, others fall like
dominoes.

Recipe. To prove that Y € N'P-complete:

1. Show that Y € NP.

2. Choose an N'P-complete problem X .
3. Provethat X <p Y.

i

Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem, others fall like
dominoes.

Recipe. To prove that Y € N'P-complete:

1. Show that Y € NP.

2. Choose an N'P-complete problem X .
3. Provethat X <p Y.

Proposition. If X € NP-complete, Y € NP,and X <p Y, thenY € NP-
complete.

Pf. Consider any problem W € ANP. Then, both W <p X and X <p Y.

« By transitivity, W <p Y.
« Hence Y € N'P-complete.

i

Quiz: N’P-complete

Suppose that X € N'P-complete, Y € NP, and X <p Y. Which can you infer?

A.Y is NP-complete.

B.IfY ¢ P, then P # NP.

C. If P # NP, then neither X nor Y is in P.
D. All of the above.

Implications of Karp + Cook-Levin

i

INDEPENDENT-SET

VERTEX-COVER

il
i

e

L

SET-COVER

B
- b
Lo L4
7 i
i e L
o ¥ \ i
o P K
B ; -J,'u'-“' 'L'l"ll-‘l e
l'.‘,:-" 1 i -
L .=
L F
il 4
[

Dir-HaM-CyCLE

Ham-CYCLE

&, =

SAT

4

SUBSET-5UM

KNAFSACK

All of these problems are NPcompleate; they are

manifestations of the same really hard problem.

Some NP-complete problems

Basic genres of A'/P-complete problems and paradigmatic examples.

« Packing/covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-
SET.

« Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.

« Sequencing problems: HAM-CYCLE, TSP.

 Partitioning problems: 3D-MATCHING, 3-COLOR.

« Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most AP problems are known to be either in P or NP-complete.

i

Some NP-complete problems

Basic genres of A'/P-complete problems and paradigmatic examples.

« Packing/covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-
SET.

« Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.

« Sequencing problems: HAM-CYCLE, TSP.

 Partitioning problems: 3D-MATCHING, 3-COLOR.

« Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most AP problems are known to be either in P or NP-complete.
NP-intermediate? FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, etc.

Theorem. [Ladner 1975] Unless P = NP, there exist problems in AP that are
neither in P nor NP-complete.

More hard computational problems

Garey and Johnson. Computers and Intractability.

« Appendix includes over 300 N’P-complete problems.
« Most cited reference in computer science literature.

co-NP

Asymmetry of A'P: ex 1

Asymmetry of N’P. We need short certificates only for yes instances.

i

Asymmetry of NP: ex 1
Asymmetry of N’P. We need short certificates only for yes instances.

Ex 1. SAT vs. UN-GAT.

« Can prove a CNF formula is satisfiable by specifying an assignment.
« How could we prove that a formula is not satisfiable?

i

Asymmetry of N'P: ex 1

Asymmetry of A’P. We need short certificates only for yes instances.

Ex 1. SAT vs. UN-GAT.

« Can prove a CNF formula is satisfiable by specifying an assignment.
« How could we prove that a formula is not satisfiable?

SAT. Given a CNF formula ®, is there a satisfying truth assignment?

UN-SAT. Given a CNF formula @, is there no satisfying truth assignment?

i

Asymmetry of NP: ex 2
Asymmetry of N’P. We need short certificates only for yes instances.

Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.

« Can prove a graph is Hamiltonian by specifying a permutation.
« How could we prove that a graph is not Hamiltonian?

i

Asymmetry of NP: ex 2
Asymmetry of N’P. We need short cettificates only for yes instances.
Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.

« Can prove a graph is Hamiltonian by specifying a permutation.
« How could we prove that a graph is not Hamiltonian?

HAM-CYCLE. Given a graph G = (V, E), is there a simple cycle I" that contains
everynode in V7

NO-HAM-CYCLE. Given a graph G = (V, E), is there no simple cycle I" that
contains every node in V'?

Asymmetry of A'P: question

Asymmetry of N’P. We need short certificates only for yes instances.

Q. How to classify UN-SAT and NO-HAM-CYCLE?

i

Asymmetry of A'P: question

Asymmetry of A’P. We need short certificates only for yes instances.

Q. How to classify UN-SAT and NO-HAM-CYCLE?

« SAT € N'P-complete and SAT =p UN-SAT.
« HAM-CYCLE € N'P-complete and HAM-CYCLE =p» NO-HAM-CYCLE.
« But neither UN-SAT nor NO-HAM-C YCLE are known to be in NP.

i

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAM-CYCLE, and COMPOSITES.

i

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAM-CYCLE, and COMPOSITES.

Def. Given a decision problem X, its complement X is the same problem with yes
and no answers reversed.

Ex. X = {4,6,8,9,10,12,14,15,...}

« X =92.851711,13,17,23.29....
= note: ignore 0 and 1 (neither prime nor composite)

i

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAM-CYCLE, and COMPOSITES.

Def. Given a decision problem X, its complement X is the same problem with yes
and no answers reversed.

Ex. X = {4,6,8,9,10,12,14,15,...}

« X =92.851711,13,17,23.29....
= note: ignore 0 and 1 (neither prime nor composite)

co-NP. Complements of decision problems in NP.
Ex. UN-SAT, NO-HAM-CYCLE, and PRIMES.

i

NP = co-NP?
Fundamental open question. Does NP = co-NP?

« Do yes instances have succinct certificates iff no instances do?
« Consensus opinion: no.

i

NP = co-NP?
Fundamental open question. Does NP = co-NP?

» Do yes instances have succinct certificates iff no instances do?
« Consensus opinion: no.

Theorem. If NP +# co-NP, then P # NP.
Pf idea.

» P is closed under complementation.

e If P = NP, then NP is closed under complementation.
e In other words, NP = co-NP.

« This is the contrapositive of the theorem.

i

Good characterizations
Good characterization. [Edmonds 1965] NP (M co-NP.

e If problem X is in both NP and co-NP, then:
= for yes instance, there is a succinct certificate
= for no instance, there is a succinct disqualifier
« Provides conceptual leverage for reasoning about a problem.

i

Good characterizations
Good characterization. [Edmonds 1965] NP 1 co-NP.

o If problem X is in both NP and co-NP, then:
= for yes instance, there is a succinct certificate
= for no instance, there is a succinct disqualifier
« Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching?

« If yes, can exhibit a perfect matching.
« If no, can exhibit a set of nodes S such that |neighbors(S)| < |S]|.
= means: no need to enumerate all possibilities
= note (as in paper): “... does not mean necessarily that there is a good
algorithm.”

Good characterizations: ex 1
Observation. P C NP 1 co-NP.

« Proof of max-flow min-cut theorem led to stronger result that max-flow and min-
cutarein P.
= max-flow complements to min-cut

« Sometimes finding a good characterization seems easier than finding an efficient
algorithm.

i

Good characterizations: ex 1
Observation. P C NP 1 co-NP.

« Proof of max-flow min-cut theorem led to stronger result that max-flow and min-
cutarein P.
= max-flow complements to min-cut

« Sometimes finding a good characterization seems easier than finding an efficient
algorithm.

Fundamental open question. Does P = NP N co-NP?

« Mixed opinions.
« Many examples where problem found to have a nontrivial good characterization,
but only years later discovered to be in P.

Linear programming is in N’P N co-NP

LINEAR-PROGRAMMING. Given A € R™*™". b R™,¢c € R", and a € R, does
there exist z € R" suchthat Az < b,z > 0and c¢Tz > a?

i

Linear programming is in N’P N co-NP

LINEAR-PROGRAMMING. Given A € R™ " be R™,c € R", and a € R, does
there exist z € R" suchthat Az < b,z > 0and c¢Tz > a?

Theorem. [Gale-Kuhn-Tucker 1948] LINEAR-PROGRAMMING € NP N co-NP.
Pf sketch. If (P) and (D) are nonempty, then max» = min.

(Primary) max ¢’ z (Dual) min y”b

s.t. Az <b st. ATy >ec
x>0 y >0

i

Linear programming is in N’P N co-NP

LINEAR-PROGRAMMING. Given A € R™ " be R™,c € R", and a € R, does
there exist z € R" suchthat Az < b,z > 0and c¢Tz > a?

Theorem. [Gale-Kuhn-Tucker 1948] LINEAR-PROGRAMMING € NP N co-NP.
Pf sketch. If (P) and (D) are nonempty, then max» = min.

(Primary) max ¢’ z (Dual) min y”b

s.t. Az <b st. ATy >ec
x>0 y >0

Theorem. [Khachiyan 1979] LINEAR-PROGRAMMING € P.

i

Primality testing is in A’P N co-NP

Theorem. [Pratt 1975] PRIMES & NP N co-NP.
Pf sketch. An odd integer s is prime iff there exists an integer 1 < t < s s.t.

t*!1=1 (mod s)
t% #£1 (mod s)

for all prime divisors p of s — 1.

« instance s: 437677 CERTIFIER (s)
e certificate t: 17,2% x 3 x 36473
« prime factorization of s — 1 also CHECK s —1 =2 x 2 x 3 x 36473.
need a recursive certificate to CHECK 17°7! =1 (mod s).
assert 36,473 is prime CHECK 17(s-1)/2 = 437676 (mod s).
CHECK 170*-1/3 = 329415 (mod s).

)
CHECK 17(3-1)/36473 — 305452
(mod s).

Primality testing is in P
Theorem. [Agrawal-Kayal-Saxena 2004] PRIMES € P.

Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does x have a nontrivial factor < y?

i

Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does x have a nontrivial factor < y?

Theorem. FACTOR =p FACTORIZE.
Pt.

o < P trivial.
« > P binary search to find a factor; divide out the factor and repeat.

i

Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does x have a nontrivial factor < y?

Theorem. FACTOR =p FACTORIZE.
Pf.

o < P trivial.
« > P binary search to find a factor, divide out the factor and repeat.

Theorem. FACTOR € NP N co-NP.
Pf.

« Certificate: a factor p of = that is less than y.
« Disqualifier: the prime factorization of = (where each prime factor is less than y),
along with a Pratt certificate that each factor is prime.

Is factoring in P?
Fundamental question. Is FACTOR € P?

i

Is factoring in P?
Fundamental question. Is FACTOR € P?

Challenge. [RSA-704] Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563 796359

($30,000 prize if you can factor)

Exploiting intractability
Modern cryptography.

« EX. Send your credit card number to Amazon.
« Ex. Digitally sign an e-document.
« Enables freedom of privacy, speech, press, etc.

i

Exploiting intractability
Modern cryptography.

e EX. Send your credit card number to Amazon.
« Ex. Digitally sign an e-document.
« Enables freedom of privacy, speech, press, etc.

RSA. Based on dichotomy between complexity of two problems.

 To use: generate two random n-bit primes and multiply.
« To break: suffices to factor a 2n-bit integer.

Factoring on a quantum computer

Theorem. [Shor 1994] Can factor an n-bit integer in O(n?) steps on a “quantum
computer.”

2001. Factored 15 = 3 x 5 (with high probability) on a quantum computer.
2012. Factored 21 =3 x 7.

Factoring on a quantum computer

Theorem. [Shor 1994] Can factor an n-bit integer in O(n?) steps on a “quantum
computer.”

2001. Factored 15 = 3 x 5 (with high probability) on a quantum computer.
2012. Factored 21 =3 x 7.

Fundamental question. Does P = BOP?

« quantum analog of P (bounded error quantum polynomial time)

NP-hard

i

A note on terminology

A Terminological Proposal. [Knuth 1974]

| needed an adjective to convey such a degree of difficulty, both formally and
informally; ... The goal is to find an adjective x that sounds good in sentences
like this:

» The covering problem is .

» |tis = to decide whether a given graph has a Hamiltonian circuit.

» [ti1s unknown whether or not primality testing 1a an > problem.

i

A note on terminology

A Terminological Proposal. [Knuth 1974]

| needed an adjective to convey such a degree of difficulty, both formally and
informally; ... The goal is to find an adjective x that sounds good in sentences
like this:

» The covering problem is .

 |tis = to decide whether a given graph has a Hamiltonian circuit.

» [ti1s unknown whether or not primality testing 1a an > problem.

Note. The term = does not necessarily imply that a problem is in AP, just that every
problem in AP poly-time reduces to .

Terminology suggestions

Knuth’s original suggestions.

« Hard, Tough: too common and may already been used.
« Herculean, Formidable, Arduous: arcane.

Terminology suggestions

Knuth’s original suggestions.

« Hard, Tough: too common and may already been used.
« Herculean, Formidable, Arduous: arcane.

Some English word write-ins.

« Impractical.
» Bad.

* Heavy.

» Tricky.

» [ntricate.

» Prodigious.
e Difficult.

« Intractable.
« Costly.

» Obdurate.
» Obstinate.

i

e Exorbitant.
« [nterminable.

Terminology in literature
Hard-boiled. [Ken Steiglitz] In honor of Cook.

Hard-ass. [Al Meyer] Hard AS Satisfiability.
Sisyphean. [Bob Floyd] Problem of Sisyphus was time-consuming.

Ulyssean. [Donald Knuth] Ulysses was known for his persistence.

i

Terminology in literature
Hard-boiled. [Ken Steiglitz] In honor of Cook.

Hard-ass. [Al Meyer] Hard AS Satisfiability.
Sisyphean. [Bob Floyd] Problem of Sisyphus was time-consuming.

Ulyssean. [Donald Knuth] Ulysses was known for his persistence.

“ creative research workers are as full of ideas for new terminology as they are
empty of enthusiasm for adopting it. © — Donald Knuth

i

Terminology: acronyms
PET. [Shen Lin] Probably Exponential Time.

o If P £ NP, Provably Exponential Time.
e If P = NP, Previously Exponential Time.

GNP. [Al Meyer] Greater than or equal to NP in difficulty.

« And costing more than the GNP to solve.

Terminology: made-up words

Exparent. [Mike Paterson] Exponential + apparent.
Perarduous. [Mike Paterson] Throughout (in space or time) + completely.
Supersat. [Al Meyer] Greater than or equal to satisfiability.

Polychronious. [Ed Reingold] Enduringly long; chronic.

i

Terminology: consensus

NP-complete. A problem in AP such that every problem in NP poly-time reduces
to it.

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]
A problem such that every problem in AP poly-time reduces to it.

i

Terminology: consensus

NP-complete. A problem in AP such that every problem in NP poly-time reduces
to it.

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]
A problem such that every problem in A’P poly-time reduces to it.

“If the Martians know that P = NP for Turing Machines and they kidnap me, |
would lose face calling these problems ‘formidable’.” — Vaughan Pratt.

