Algorithm I

8. Intractability |

WU Xiaokun 2885

xkun.wu [at] gmail

Polynomial-Time Reductions

Design patterns and anti-patterns

Algorithm design patterns.

e Greedy. Divide and conquer. Dynamic programming.
« Duality.

« Reductions.

« Special structure. Approximation. Local search.

« Randomization.

Algorithm design anti-patterns.

« NP-completeness. O(n*) algorithm unlikely.
« PSPACE-completeness. O(n*) certification algorithm unlikely.
« Undecidability. No algorithm possible.

Recap: Efficiency

Q. Which problems will we be able to solve in practice?
A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.
Practice. Poly-time algorithms scale to huge problems.

i

Conceptual: Classify problems

Idea. Classify problems: can be solved in poly-time and those that cannot.
Provably requires exponential time.

« Given a constant-size program, does it halt in at most k steps?
» (aiven a board game of n-by-n checkers, can black guarantee a win?

(| 5 =
125,
\\'ﬁH =8

Frustrating news. Huge number of fundamental problems have defied classification
for decades.

Practical: Poly-time reductions

Idea. Suppose we could solve problem Y in polynomial time. What else could we
solve in polynomial time?

Reduction. Problem X polynomial-time reduces to problem Y if arbitrary
instances of problem X can be solved using:

» Polynomial number of standard computational steps, plus
« Polynomial number of calls to “oracle” that solves problem Y.

i

Practical: Poly-time reductions

Idea. Suppose we could solve problem Y in polynomial time. What else could we
solve in polynomial time?

Reduction. Problem X polynomial-time reduces to problem Y if arbitrary
instances of problem X can be solved using:

» Polynomial number of standard computational steps, plus
« Polynomial number of calls to “oracle” that solves problem Y.

Notation. X <p Y.

Note. We pay for time to write down instances of ¥ sent to oracle = instances of ¥
must be of polynomial size.

Common mistake. Confusing X <p Y withY <p X.

i

Quiz: X <p Y
Suppose that X <p Y. Which of the following can we infer?

A. If X can be solved in polynomial time, thensocan Y.

B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.

i

Quiz: X <p Y
Suppose that X <p Y. Which of the following can we infer?

A. If X can be solved in polynomial time, thensocan Y.

B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.

C. contrapositive

i

Poly-time reductions

Design algorithms. If X <p Y and Y can be solved in polynomial time, then X can
be solved in polynomial time.

Establish intractability. If X <p Y and X cannot be solved in polynomial time,
then Y cannot be solved in polynomial time.

Establish equivalence. If both X <p Y and Y <p X, we use notation X =p Y.

« In this case, X can be solved in polynomial time iff ¥ can be.

Bottom line. Reductions classify problems according to relative difficulty.

Packing and covering

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer &, is there a subset
of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size > 77

H
i)

ram
i J=

-

Optimization: [Packing] What is the maximum size independent set?

i

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of
< k vertices that each edge is incident to at least one vertex in the subset?

EX. Is there a vertex cover of size < 37

F @
(Z W
' =
i ;;
®; e

Optimization: [Covering] What is the minimum size vertex cover?

Packing =p Covering

Theorem. INDEPENDENT-SET =p VERTEX-COVER.
Pf. We show S is an independent set of size k iff V' — S is a vertex cover of size

n— k.
&% (@
& @, ®, @
B @ & &
@ & (

-
.
i |
L |

i

Packing =p Covering: =

Theorem. INDEPENDENT-SET =p VERTEX-COVER.

Pf. We show S is an independent set of size k iff V' — § is a vertex cover of size
n— k.

« Let S be any independent set of size k.
« V - Sisofsizen — k.
« Consider an arbitrary edge (u,v) € E.
= S independent = eitheru ¢ S, orv ¢ S, or both.
» = githerue V—-S,orveV —8, orboth.
» Thus, V — S covers (u, v).
« = VERTEX-COVER <p INDEPENDENT-SET.

i

Packing =p Covering: <

Theorem. INDEPENDENT-SET =p VERTEX-COVER.

Pf. We show S is an independent set of size k iff V' — § is a vertex cover of size
n— k.

« Let V — S be any vertex cover of size n — k.
« 5is of size k.

« Consider an arbitrary edge (u,v) € E.
« V — Sisa vertex cover = eitheru e V. — 5, orve V — 8, or both.
» = eitheru ¢ S,orv ¢ S, or both.

e Thus, S is an independent set.

« = INDEPENDENT-SET <p VERTEX-COVER.

i

Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an
integer k, are there < k of these subsets whose union is equal to U?

Sample application. software-services.

1 2 3 4 5 6 7

MmO |m@| >
+
+
=
=+

i

Vertex Cover <p Set Cover

Theorem. VERTEX-COVER <p SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a SET-
COVER instance (U, S, k) that has a set cover of size k iff G has a vertex cover of
size k.

i

Vertex Cover <p Set Cover

Theorem. VERTEX-COVER <p SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a SET-

COVER instance (U, S, k) that has a set cover of size k iff G has a vertex cover of
size k.

Construction.

e Universe U = E.
« Include one subset for each node v € V' : S, = {e € E : e incident to v}.

Vertex Cover <p Set Cover: Lemma

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set
cover of size k.
Pf. = Let X C V be a vertex cover of size k in G&.

e ThenY = 8§, : v € X is a set cover of size k.

Vertex Cover <p Set Cover: Lemma (cont.)

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set
cover of size k.
Pf. =LetY C S be a set cover of size k in (U, S, k).

« Then X =v: 5, € Y is a vertex cover of size k in G.

Constraint satisfaction

Recap: Conjunctive normal form (CNF)

Literal. A Boolean variable or its negation: z;, z;.
Clause. A disjunction of literals: eg., C; = =1 V @ V 3.

Conjunctive normal form (CNF). A propositional formula @ that is a conjunction of
clauses:eqg., ® = C; A Cs A C.

i

Satisfiability
SAT. Given a CNF formula &, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal
corresponds to a different variable).

EX.P=(zy Vs Va3z)A(Z1 VT2V ag) A(z1 V2V 2ye)

e yesinstance. zy = 1,2y = 1,23 = 0,24 =0

Key application. Electronic design automation (EDA).

i

Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. N'P. This hypothesis is equivalent to P # NP conjecture.

Donald J. Trump &

@rmalDonald Thamp m
Computer Scientists have so much funding and
time and can't even figure out the boolean
salisfiability problam, SAT!

603 soq0s HIEFSLPEEBRL 2

B3 AM - 1T Apr 2017

3-SAT <p INDEPENDENT-SET

Theorem. 3-SAT <, INDEPENDENT-SET.
Pf. Given a 3-SAT instance ¢, we construct a INDEPENDENT-SET instance (G, k)
that has a size k = |®| independent set iff @ is satisfiable.

i

3-SAT <p INDEPENDENT-SET

Theorem. 3-SAT <p INDEPENDENT-SET.

Pf. Given a 3-SAT instance ¢, we construct a INDEPENDENT-SET instance (G, k)
that has a size k = |®| independent set iff @ is satisfiable.

Construction.

» (7 contains 3 nodes for each clause, one for each literal.
» Connect 3 literals in a clause in a triangle.
« Connect literal to each of its negations.

ok I X

A ;r--*"'"j'b““‘ﬂ-u,_ ’___,-----*‘:-1%%
A WA
% T Y B)

Xy Xy X Xy E X

®=(zyVeaVaz) A(z1 V2 Vas) Az Vo Vay)

3-SAT <p INDEPENDENT-SET: Lemma

Lemma. @ is satisfiable iff G contains an independent set of size k = |®|.
Pf. = Consider any satisfying assignment for &.

« Select one true literal from each clause/triangle.
 This is an independent set of size k = |®|.

3-SAT <p INDEPENDENT-SET: Lemma

Lemma. @ is satisfiable iff G contains an independent set of size k = |®|.
Pf. <= Let S be independent set of size k.

e S5 must contain exactly one node in each triangle.
« Set these literals to - rue (and remaining literals consistently).
« All clauses in @ are satisfied.

i

Review

Basic reduction strategies.

« Simple equivalence: INDEPENDENT-SET =p VERTEX-COVER.
« Special case to general case: VERTEX-COVER < p SET-COVER.
« Encoding with gadgets: 3-SAT <p INDEPENDENT-SET.

i

Review

Basic reduction strategies.

« Simple equivalence: INDEPENDENT-SET =p VERTEX-COVER.
« Special case to general case: VERTEX-COVER < p SET-COVER.
« Encoding with gadgets: 3-SAT <p INDEPENDENT-SET.

Transitivity. f X <p Y andY <p Z,then X <p Z.
Pf idea. Compose those two algorithms.

Ex. 3-SAT <p INDEPENDENT-SET =p VERTEX-COVER < p SET-COVER.

Decision, Search, Optimization
Decision problem. Does there exist a vertex cover of size < k7

Search problem. Find a vertex cover of size < k.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

i

Decision vs. Search

VERTEX-COVER. Does there exist a vertex cover of size < k7
FIND-VERTEX-COVER. Find a vertex cover of size < k.

Theorem. VERTEX-COVER =p FIND-VERTEX-COVER.
Pf. <p Decision problem is a special case of search problem.
Pf. > p To find a vertex cover of size < k:

» Determine if there exists a vertex cover of size < k.

« Enumerate V" and find a vertex v that G — {v} has a vertex cover of size < k —
1. (any vertex in any vertex cover of size < k will suffice)

* [nclude v in the vertex cover.

 Recursively find a vertex cover of size < k — 1in G — {v}.

i

Search vs. Optimization

FIND-VERTEX-COVER. Find a vertex cover of size < k.
FIND-MIN-VERTEX-COVER. Find a vertex cover of minimum size.

Theorem. FIND-VERTEX-COVER =p FIND-MIN-VERTEX-COVER.
Pf. <p Search problem is a special case of optimization problem.

Pf. > p To find vertex cover of minimum size:

» Binary search (or linear search) for size £* of min vertex cover.
« Solve search problem for given k*.

Sequencing problems

i

Hamilton cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle T’
that visits every node exactly once?

Sequencing Problems. Search over all permutations of a collection of objects.

« EX. Traveling Salesman Problem.
= Missing ordering?

Directed Hamilton cycle

DIR-HAM-CYCLE. Given a directed graph G = (V, E), does there exist a directed
cycle I' that visits every node exactly once?

Theorem. DIR-HAM-CYCLE < p HAM-CYCLE.
Pf. Given a directed graph G = (V, E), construct a graph G' with 3n nodes.

{fi |
.

directed graph G e undirected graph G*

i

DIR-HAM-CYCLE <p HAM-CYCLE

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. =

« Suppose G has a directed Hamilton cycle I.
« Then G' has an undirected Hamilton cycle (same order).

Pf. <

« Suppose G’ has an undirected Hamilton cycle I,

I must visit nodes in G’ using one of following two reverse orders:
iy I W Byl o W B I W s
L W S B WK B W B s

« Black nodes in I comprise either a directed Hamilton cycle T" in G, or reverse of
one.

i

3-SAT <p DIR-HAM-CYCLE

Theorem. 3-SAT <p DIR-HAM-CYCLE.
Pf. Given an instance ¢ of 3-SAT, we construct an instance G of DIR-HAM-CYCLE

that has a Hamilton cycle iff @ is satisfiable.

Construction overview. Let n denote the number of variables in ®.
We will construct a graph G that has 2n Hamilton cycles, with each cycle
corresponding to one of the 2n possible truth assignments.

Construction: variable
Construction. Given 3-SAT instance ® with n variables x; and & clauses.

» Construct G to have 2n Hamilton cycles.
e Intuition: traverse path i from left to right < set variable z; = £t rue.

K3

i

Quiz: DIR-HAM-CYCLE

Which is truth assignment corresponding to Hamilton cycle below?

* I =true, 9 = true, Ty = true

® ry=true, s =true, r3= false

e) =false, Py = false, &3 =true
o 1 = false, 9 = false, 3 = false
_h.!.
- - = - -— =
- — = — e T,
> > - i g,

i

Construction: clause
Construction. Given 3-SAT instance ¢ with n variables z; and k clauses.

« For each clause: add a node and 2 edges per literal.

node for clause j node for clause K
C |
connect in this way
it r appears in clause comnect i this. winy
X
¥ H‘“‘-—* F...-"" if % appears n clause O
i » X
h ;
K""\. iy . .- " "'J " .-"f
"'\-\.._-"' o _-" "'H. '\. .-I" T _-"'- "'H. "'\-. ,..-"' "'|-_ =

. - —_— ——

A= trm —— e

— % = false

Construction: example
Construction. Given 3-SAT instance ® with n variables z; and k clauses.

» For each clause: add a node and 2 edges per literal.

[:L'-'L =TV G "u".t'_-.) clause node 1 tlause mode 2 E{i; =T V¥V IV ;5)

i

3-SAT <p DIR-HAM-CYCLE: Lemma

Lemma. ¢ is satisfiable iff G has a Hamilton cycle.
Pf. =

» Suppose 3-SAT instance ® has satisfying
assignment z*.
« Then, define Hamilton cycle I' in G as follows:

iy R
‘_ I - }
2

oFL :
- ,-' .
Lo i
L 8 1 1

« for each variable =},
» f 7 = true, traverse row i from left to right
o if 2] = fals=e, traverse row from right to left
» for each clause C},
= at least one row ¢ in which we are going in “correct” direction
= splice clause node C; into cycle (and splice C'; exactly once)

i

3-SAT <p DIR-HAM-CYCLE: Lemma

Lemma. ¢ is satisfiable iff G has a Hamilton cycle.

Pf. &
 Suppose G has a Hamilton cycle T'. T
« If I" enters clause node C, it must depart on a NS -
parallel (variable) edge. Q | I |
= nodes neighbor to C'; are connected by an edge —
ec E
« remove C; from cycle, and replace it with edge e yields Hamilton cycle on G —
{C}
= Continuing in this way, we are left with a Hamilton cycle I in G —
{0, Cayonn s B)

e Set 27 = t rue if I traverses row i left-to-right; otherwise, set z7 = fal=ec.
e traversed in “correct” direction, and each clause is satisfied.

Poly-time reductions: review |

constraint satisfaction

‘v.l'\..'ll:"l‘Ll\.7
-.'-.“'? 11— -I.:L."
A A 8
Rt
i i
INDEPENDENT-SET Dr-Ham-CyCLE 30 O
w
VERTEX-COVER Ham-CyCLE

Ser-Cover

packing and covering sEquencing

Partitioning problems

i

3-dimensional matching

3D-MATCHING, Given n instructors, n courses, and n times, and a list of the possible
courses and times each instructor is willing to teach, is it possible to make an
assignment so that all courses are taught at different times?

Ex. Three courses, Mon.-Wed. afternoon.

I M T W
A Al, AD
B Al Al, SE

C Al SE SE

{A, AD, W}, (B, Al, T}, {C, SE, M}

i

3D-MATCHING

3D-MATCHING. Given 3 disjoint sets X, Y, Z,eachof sizenandasetT C X x
Y x Z of triples, does there exist a set of n triples in T" such that each element of
X UY U Z isin exactly one of these triples?

Remark. Generalization of bipartite matching.

« each elementof X UY isin exactlyoneof X x Y

i

3D-MATCHING

3D-MATCHING. Given 3 disjoint sets X, Y, Z,eachof sizenandasetT C X x
Y x Z of triples, does there exist a set of n triples in T" such that each element of
X UY U Z isin exactly one of these triples?

Remark. Generalization of bipartite matching.

« each elementof X UY isin exactlyoneof X x Y

Theorem. 3-SAT <p 3D-MATCHING.
Pf. Given an instance @ of 3-SAT, we construct an instance of 3D-MATCHING that
has a perfect matching iff ® is satisfiable.

Constructing gadget: variable

Construction. (variable)

» Create gadget for each variable z; with 2k core elements and 2k tip ones.
= k. number of clauses, or triplets.

= {ip: assignment of one variable.
= core: one pair in some ftriplet.

clause I tips
4:3-"""1
PR & G
9 SN

o, e =T W
(9 elements I:i

g 8 \
b &
i2

clause 1 tips

clause 3 1ips

Q

Constructing gadget: variable (cont.)

Construction. (variable)

» Create gadget for each variable z; with 2k core elements and 2k tip ones.
= A perfect matching will not use overlapping core elements.
o |In gadget for z;, must use either all gray ftriples (even: x; = t ru=) or all
Dlue ones (oad. z; = false).
= Or view from tips: two possible choices.

talse
clause 1tips —s = i ®) '®
Y
me <© 0 2O C e © ol
D T £ & £ &
k = 2 clauses @ +— clause 2 tips G G

= 3 variables
X1 X2 X3

i

Constructing gadget: clause

Construction. (clause)

« Create gadget for each clause C'; with two core elements and three friples.
» Exactly one of these triples will be used in any 3d-matching.
o Ensures example perfect matching uses either: (i) grey core of z, or (ii)
blue core of x4 or (iii) grey core of xj.
« Opposite to truth assignment of variables.

clavge 1 gadgan

ealh clause assgned Cr= 3 ¥ X %X,

its own F adjacen] tips .

Tale

charie 1 tigs — oy .‘;m 5] L
S oW o o [—
o o Lo < P

() & o

i

Constructing gadget: cleanup

Construction. (cleanup)

e There are 2nk tips: nk covered by blue/gray triples; k£ by clause triples.
« To cover remaining (n—1)k tips, create (n—1)k “cleanup” gadgets: same as
clause gadget but with 2nk triples, connected to every tip.

B Ci= 5, VX VX
false . ¢leamip gadgey
" i
L. o%@? ﬁvﬁ %“_r n;é l’;.ﬁ}‘

i

3-SAT <p 3D-MATCHING

Lemma. Instance (X, Y, Z) has a perfect matching iff ® is satisfiable.

Q. Whatare X,Y ,and Z7

i

3-SAT < p 3D-MATCHING (cont.)

Lemma. Instance (X, Y, Z) has a perfect matching iff ® is satisfiable.

Q. Whatare X,Y ,and Z7
A. X =black, Y =white,and £ =blue.

clause | gadges
Ci= X ¥ X vay
-
&/ « ®
e 0
L

. Ldh. AN
> « Y

] D L
o i X3

i

3-SAT <p 3D-MATCHING: proof

Lemma. Instance (X, Y, Z) has a perfect matching iff ® is satisfiable.
Pf. = If 3d-matching, then assign z; according to gadget z;.

Pf. <= If ® is satisfiable, use any true literal in C'; to select gadget C; triple.

clauie 1 gadget
i = 5 v Ey ¥ Xy
falss keanup gadget
=y i/ . n
1 £l . ‘ol ol
e @ . ¥ _ . ° @
- LY . L e 3

. . e iﬁ"

X M)

Graph coloring

3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored b1 ack, white,
and -1 ue so that no adjacent nodes have the same color?

Q
-
Q O
O
® ® o o ¢ O

i

Quiz: 2-COLOR

How difficult to solve 2-COLOR?

A. O(m + n) using BFS or DFS.
B. O(mn) using maximum flow.
C. ©(2") using brute force.
D. Not even Tarjan knows.

i

Quiz: 2-COLOR

How difficult to solve 2-COLOR?

A. O(m + n) using BFS or DFS.
B. O(mn) using maximum flow.
C. ©(2") using brute force.
D. Not even Tarjan knows.

A graph G is 2-colorable if and only if it is bipartite.

e S0, O(m + n)
» See Section 3.4

Application: register allocation

Register allocation. Assign program variables to machine registers so that: (i) no
more than k registers are used, (ii) and no two program variables that are needed at
the same time are assigned to the same register.

i

Application: register allocation

Register allocation. Assign program variables to machine registers so that: (i) no
more than k registers are used, (ii) and no two program variables that are needed at
the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between « and v if there
exists an operation where both » and v are "live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference
graph is k-colorable.

i

Application: register allocation

Register allocation. Assign program variables to machine registers so that: (i) no
more than k registers are used, (ii) and no two program variables that are needed at
the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between « and v if there
exists an operation where both » and v are "live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference
graph is k-colorable.

Fact. 3-COLOR <p K-REGISTER-ALLOCATION for any constant & > 3.

i

3-SAT <p 3-COLOR

Theorem. 3-SAT <p 3-COLOR.

Pf. Given 3-SAT instance &, we construct an instance of 3-COLOR that is 3-
colorable iff ® is satisfiable.

« [ntuition: see the following graph which is not 3-colorable.

i

3-SAT <p 3-COLOR: Construction

Construction.

1. Create a graph GG with a node for each literal.

2. Connect each literal to its negation.

3. Create 3 newnodes T, F', and B; connect them in a triangle.
4. Connect each literal to B.

5. For each clause C;, add a gadget of 6 nodes and 13 edges.

frue false

i

3-SAT <p 3-COLOR: =

Lemma. Graph G is 3-colorable iff ¢ is satisfiable.
Pf. = Suppose graph G is 3-colorable.

e WLOG, assume node T is colored black, Fiswhite, and B iS blue.
» Consider assignment sets all b1ack literals to true (and white to false).
» #4 ensures each literal is colored either black or white,

» #2 ensures each literal is white if its negation is b1 zck (and vice versa).

""-.‘-\‘-‘\- B
\h‘{:\y C,=x VX VX

T,

i

3-SAT <p 3-COLOR: = (cont.)

Lemma. Graph G is 3-colorable iff ¢ is satisfiable.
Pf. = Suppose graph G is 3-colorable.

« #5 ensures at least one literal in each clause is b1 acl.
= suppose (for contradiction) all 3 literals are whit= in some 3-coloring
= then first row must be 3 b1ue,
= then second row must alternate between white & black,
o no possible coloring.

R

(n (%

e
n

| u
’ o

C,=x v X, v

F false

i

3-SAT <p 3-COLOR: <

Lemma. Graph G is 3-colorable iff ¢ is satisfiable.
Pf. <= Suppose 3-SAT instance @ is satisfiable.

e Color all true literals b1 ack and all £al =< literals white.
» Pick one true literal; color node below that node «white, and node below that
blue.

* Color remaining middle row nodes b1 ue=.
« Color remaining bottom nodes -1 ack or white, as forced.

"'-.___1__‘-- —
. C. =x vV X Vv Xy

J

true g U DY
: {hn‘ ' ' *-LF..H o

Poly-time reductions: review Il

constraint satisfaction

INDEPENDENT-SET Dir-HaM-CYCLE 3-COL0OR
VERTEX-COVER HaM-CYCLE
SET-CovER

packing and covering saquencing partitioning

i

Numerical problems

i

Subset sum

SUBSET-SUM. Given n natural numbers wy,...,w, and an integer W, is there a
subset that adds up to exactly W?

Ex. {215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655,655}, W = 1505.
Yes. 215 + 355 + 355 + 580 = 1505.

Why is it a problem?

We solved it using dynamic programming with time O(nW).

i

Why is it a problem?
We solved it using dynamic programming with time O(nW).

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time
reduction must be polynomial in binary encoding.

« problem comes when W is large.

» eX. 100 numbers, each number is 100 bits long:
= input: 100 x 100 = 10000 digits,
« W:roughly 2% exponential to size of input.

i

Why is it a problem?
We solved it using dynamic programming with time O(nW).

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time
reduction must be polynomial in binary encoding.

« problem comes when W is large.

» eX. 100 numbers, each number is 100 bits long:
= input: 100 x 100 = 10000 digits,
« W:roughly 2% exponential to size of input.

We referred to such problem as Pseudo-polynomial.

 ran in time polynomial in the magnitude of the input numbers,
« but not polynomial in the size of their representation.

3-SAT <p SUBSET-SUM

Theorem. 3-SAT <, SUBSET-SUM.

Pf. Given an instance ¢ of 3-SAT, we construct an instance of SUBSET-SUM that
has solution iff & is satisfiable.

i

3-SAT <p SUBSET-SUM: construction

Construction. Given 3-SAT instance € with n variables and k clauses, form 2n +

2k decimalintegers, each having n + k digits:

« Include one digit for each variable =; and
one digit for each clause C;.
= fwo numbers for each variable z;.
= two numbers for each clause C;.

« Sum of z; column is 1; sum of C'; column is
4.

Key property. No carries possible = each digit
yields one equation.

=XV n v ni

¢ = XV vV i

..

100,010
100,101
10, 100
10,011
1,110
1,001
1o

200

10

20

1

2

L

=T — TN — R - T T IR I — T~ B A -
D o N = o Bl = = 9 o =
Mo—- 0 o o o|—- o = o = o

0
0
0
0
I
|
0
0
H
0
0
H

—
== I = R — N — R - S — N I~ (R — G — [— R
o Qo Q QD Q Qo0 = = Q0

i

3-SAT <p SUBSET-SUM: =

Lemma. @ is satisfiable iff there exists a subset that sums to W.
Pf. = Suppose 3-SAT instance ® has satisfying assignment z*.

o [f x; = true, select integer in row z;,

otherwise, select integer in row —z;. w10 o EEHEEE 100,010
» Each z; digit sums to 1. w100 I 100,101
" . — Bt » 0 I 0 I 0 0 10,100

« Since ¢ is satisfiable, each C; digit sums to KARRETENREER -
at least 1 from «; and —x; rows. w 0| 61 ¥ T 0| 1
« Select dummy integers to make C; digits SERIIENENE IR NN
P i L] 0 I 0 4] 100

sumto 4. 6 0 0 2 0o 0 200

L L] 0 L] 1 0 1

s L_ v U = q 0 0 0 5 g 20

i i 3 o |0 o 0 &} 1

=Y —x; V X3 @ 0 0 0o 0 2 2

i X2 Xy \

i

3-SAT <p SUBSET-SUM: <

Lemma. @ is satisfiable iff there exists a subset that sums to W.
Pf. <= Suppose there exists a subset S* that sumsto W.

« Digit ; forces subset S* to select either row

I; Or row —x; (DUt not hﬂth]. n 1 0 o BENEREON 100,010

e |[f row z; selected, assign z; = true; ~n 1 0 0 B 100,101
otherwise, assign z: = false - BARMLARALAEA ..

’ gne; = ralse. S @ 1 0 B ¥ | igan

« Digit C'j forces subset S* to select at least CEARIEREAEAEY
one literal in clause. HEIARIERE IR IEN
P { (1] 0 i 0 0 1

... L 0 0 2 0 0 200

Cl — W . WV I3 4 LI 1] o 1] 1 a 10

Py SV 5 v = Ll L] i) 0 2 0 20

P : 00 0 0 0 0) 1

L C= o Voo Vool 0o 0 0 o 0 2 2

%

Poly-time reductions: review llI

constraint satisfaction

INDEPENDENT-5ET Dir-Ham-CyCLE 3-COLOR SUBSET-5UM

VERTEX-COVER Ham-CyCLE KnAPSACK

SET-COVER

packing and covering seguencing partitioning numerical

i

Karp’s 20 reductions from satisfiability
Karp [1972], 1985 Turing Award.

- SATISFLABILITY
./"""f ‘
H'_,.-r-"'

it 0-1 INTEGER SATISFIABILITY WITH AT
G i P PROCHAMMING MOST 3 LITERALS PER CLAUSE
NOUE _ ST :
//EI:WER\ PACK ING CHROMATIC NUMBER
FEEDBACK FEEDBACK mnhﬂ. EXACT CLIQUE
SODE SET ARC SET HAMILTON oo __COVER COVER
CIRCULT !_,.r/ i\\
J-DIMENSTONAT, HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREF
HAMT LTON
CIRCUTT

SEQUENCING [PARTITION

Max CLUT

