Algorithm Il

7. Network Flow lli

WU Xiaokun 2885

xkun.wu [at] gmail

Assignment problem

Assignment problem
Input. Weighted, complete bipartite graph G = (X U Y, E) with | X| = |Y|.
Goal. Find a perfect matching of min weight.

min-cost perfect matching M = {
{}_Er' 1_[]!1 2_11 }

cost(M) =3+5+4=12

i

Seminar assignment

Goal. Given m seminars and n = 12m students who rank their top 8 choices, assign
each student to one seminar so that:

e Each seminar is assigned exactly 12 students.
« Students tend to be "happy” with their assigned seminar.

Solution.

» Creale one node for each student z and 12 nodes for each seminar j.
» Solve assignment problem where ¢;; is some function f of the ranks:

00 otherwise

e { f(rank(i,j)) ifiranks j
I'Jf L

i

Applications

Natural applications.

« Match jobs to machines.
» Match personnel to tasks.
 Match students to seminars.

Non-obvious applications.

 Vehicle routing.

« Signal processing.

« Earth-mover’s distance.

« Multiple object tracking.

« Virtual output queueing.

« Handwriting recognition.

» Locating objects in space.

« Approximate string matching.

» Enhance accuracy of solving linear systems of equations.

i

Bipartite matching

Bipartite matching. Can solve via reduction to maximum flow.

Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1; flow
corresponds to edges in a matching M.

Residual graph G, simplifies to:

O—1—s0)

e If (z,y) ¢ M, then (z,v) isin Gar. ety Do
e If (x,y) € M, then (y,z)isin Gy;. O O
® ®
X Y

Augmenting path simplifies to:

« Edge from s to an unmatched node = € X,

« Alternating sequence of unmatched and matched edges,
» Edge from unmatched node y € Y to t.

i

Alternating path

Def. An alternating path P with respect to a matching M is an alternating sequence
of unmatched and matched edges, starting from an unmatched node = € X and
going to an unmatched node y € Y.

Key property. Can use P to increase by one the cardinality of the matching.
Pf.Set M' = Mo P.

o P o - o e
|~;—L| |::: ll:\.._] | rﬁ}

— — o = — e

®) |

o o e P =
:\ . ; l_-_-_{,_)
x\""‘l I:‘h- -u-ﬂ':l o &
i, =% =

{x) . A

i

Successive shortest path

Cost of alternating path. Pay ¢(z, y) to match z-y; receive ¢(z, y) to unmatch.

(™ P=2-52—51->1

r.’__',l:\'\'ﬂ" ------
?\ cost(P) =2 —6+ 10 = 6
2 B mlsaee 27

Shortest alternating path. Alternating path from any unmatched node =z € X to any
unmatched node y € Y with minimum cost.

Successive shortest path algorithm.

 Start with empty matching.
« Repeatedly augment along a shortest alternating path.

i

Demo: Successive shortest path algorithm

Finding the shortest alternating path

Shortest alternating path. Corresponds to minimum cost s~t path in G ;.

o,
&u‘@—; \®

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G5, contains no negative
cycles = can compute using Bellman-Ford.

Our plan. Use dguality 1o avoid negative edge cosis (and negative cycles) = can
compute using Dijkstra.

i

Equivalent assignment problem

Duality intuition. Adding a constant p(z) to the cost of every edge incident to node
x « X does not change the min-cost perfect matching(s).
Pf. Every perfect matching uses exactly one edge incident to node .

Duality intuition. Adding a constant p(y) to the cost of every edge incident to node
y € Y does not change the min-cost perfect matching(s).
Pt. Every perfect matching uses exactly one edge incident to node y.

pil) = O @“\"' {0 pon=11
7

3

o
pii=6 (1]

2
2
9
&

pI2) = 2 (:i:/l

X Y

i

Reduced costs

Reduced costs. Forz € X,y € Y, define ¢?(z,y) = p(z) + c(z,y) — p(y).

Observation 1. Finding a min-cost perfect matching with reduced costs is equivalent
to finding a min-cost perfect matching with original costs.

piy=0 (0} 15) pio) = 11
7
3
‘-r""'s
pill = 6 Q} B ") pi=86
Fs
9 = A
4
pi2) = 2 ®/l p(2) = 3
- b i

i

Compatible prices

Compatible prices. For each node v € X LY, maintain prices p(v) such that:

o c’(z,y) > Oforall (z,y) ¢ M.
e c’(z,y) = 0forall (z,y) € M.

Observation 2. If prices p are compatible with a perfect matching M, then M is a
min-cost perfect matching.
Pf. Matching M has 0 cost.

pi0) = 0 (E" 15 {(0') pioh=1 {0 4
.\? - :
3 1]
5 0
pill =& (I_:_/E I pill=86 -Jj/ﬁ
2 5
tR{l, 2= pil) = 2= pid} a
4]
-) 3
pi2) =2 G}"#l Z) pi2r=3 -@J’Jﬂ

X Y X Y

i

Successive shortest path: algorithm

SUCCESSIVE-SHORTEST-PATH (X, Y, c)

1. M =0;
2. FOREACHv € X UY: p(v) = 0;
3. WHILE (M is not a perfect matching)
1. d = shortest path distances using costs ¢?;
2. P = shortest alternating path using costs c”p;
3. M = updated matching after augmenting along P,
4. FOREACHv € X UY :p(v) = p(v) + d(v); RETURN M;

i

Successive shortest path: demo

original costs cix, y)
plo) = 0 PO = O

@ ©®
Pl e A — S
e '3 '

= - r
; i .
. -\._\‘ - = r o
- L s, e r
r ", - _ "

F
/ . F
g il

y plli=0 . o pi1}=0

-~ N e =
- o =i
Q= < 0
-\._.- "E-_‘ " '._\.. -

2
g > N, .
. S e

i

Maintaining compatible prices 1

Lemma 1. Let p be compatible prices for M. Let d be shortest path distances in G s
with costs c?. All edges (z,y) on shortest path have ¢?*%(z,y) = 0.
Pf. Let (x,y) be some edge on shortest path.

o If (z,y) € M, then (y,z) on shortest path and d(z) = d(y) — c?(z,y);

o I'f(z,y) ¢ M,then (z,y) on shortest path and d(y) = d(z) + (=, y).

« In either case, d(z) + c?(z,y) — d(y) = 0.

e By definition, ¢’ (z,y) = p(z) + c(x,y) — p(y).

« Substituting for ¢?(z, y) yields (p(x) + d(z)) + e(z,y) — (p(y) + d(y)) = 0.
= In other words, ¢ ™(z,y) = 0.

i

Maintaining compatible prices 2

Lemma 2. Let p be compatible prices for M. Let d be shortest path distances in G s
with costs ¢”. Then p’' = p + d are also compatible prices for M .
Pf. (z,y) e M

« (y,z) is the only edge entering = in G ;. Thus, (y,) on shortest path.
e ByLEMMA 1, c?(z,y) = 0.

Pt. (z,y) ¢ M

e (z,y)isan edgein Gy = d(y) < d(z) + (z,y).

o Substituting ¢?(z, y) = p(z) + c(z,y) — p(y) = 0vyields (p(z) + d(x)) +
c(z,y) — (p(y) +d(y)) = 0.
= In other words, & %(z,y) > 0.

i

Maintaining compatible prices 3

Lemma 3. Let p be compatible prices for M and let M' be matching obtained by

augmenting along a min cost path with respect to ¢#*“. Then p’' = p + d are
compatible prices for M.

Pt.

By LEMMA 2, the prices p + d are compatible for M.

« Since we augment along a min-cost path, the only edges (z, v) that swap into or
out of the matching are on the min-cost path.

« By LEMMA 1, these edges satisfy c?*¢(z,y) = 0.

» Thus, compatibility is maintained.

i

Successive shortest path: analysis

Invariant. The algorithm maintains a matching M and compatible prices p.
Pf. Follows from LEMMA 2 and LEMMA 3 and initial choice of prices.

Theorem. The algorithm returns a min-cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible prices.
Optimality follows from OBSERVATION 2.

Theorem. The algorithm can be implemented in O(n*) time.
Pf.

» Each iteration increases the cardinality of M by 1 = n iterations.
« Bottleneck operation is computing shortest path distances d. Since all costs are
nonnegative, each iteration takes O(n?) time using (dense) Dijkstra.

i

Weighted bipartite matching

Weighted bipartite matching. Given a weighted bipartite graph with n nodes and m
edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm solves the
problem in O(n* + mn log n) time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an O(mn'/? log(nC')) time algorithm
for the problem when the costs are integers between 0 and C'.

Input-queued switching

Input-queued switching Problem

Input-queued switch.

« n input ports and n output ports in an n-by-n crossbar layout.

« At most one cell can depart an input at a time.
« At most one cell can arrive at an output at a time.
« Cell arrives at input z and must be routed to output y.

Application. High-bandwidth switches.

Xy .))

Xz) ; L)

¥i ¥z ¥a

