Algorithm II

7. Network Flow II

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Markov random fields.
- Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.

Bipartite matching

Max matching

Def. Given an undirected graph G = (V, E), subset of edges $M \subseteq E$ is a **matching** if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.

Bipartite matching

Def. A graph G is **bipartite** if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max-cardinality matching.

Bipartite matching: max-flow formulation

Formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- ullet Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add unit-capacity edges from s to each node in L.
- Add unit-capacity edges from each node in R to t.

Max-flow formulation: correctness

Theorem. 1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

 $Pf. \Rightarrow$

- Let M be a matching in G of cardinality k.
- Consider flow f that sends 1 unit on each of the k corresponding paths.
- f is a flow of value k.

Max-flow formulation: correctness (cont.)

Theorem. 1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Pf. ←

- Let f be an integral flow in G' of value k.
- Consider M = set of edges from L to R with f(e) = 1.
 - ullet each node in L and R participates in at most one edge in M
 - |M|=k: cut $(L\cup\{s\},R\cup\{t\})$ has k leaving and 0 entering

Max-flow for bipartite matching

Theorem. 1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Corollary. Can solve bipartite matching problem via max-flow formulation. Pf.

- Integrality theorem \Rightarrow there exists a max flow f^* in G' that is integral.
- 1-1 correspondence $\Rightarrow f^*$ corresponds to max-cardinality matching.

Quiz: bipartite graph via Ford-Fulkerson

What is running time of Ford-Fulkerson algorithms to find a max-cardinality matching in a bipartite graph with |L|=|R|=n?

- A. O(m+n)
- B. O(mn)
- $C. O(mn^2)$
- $\mathbf{D}.\ O(m^2n)$

Quiz: bipartite graph via Ford-Fulkerson

What is running time of Ford-Fulkerson algorithms to find a max-cardinality matching in a bipartite graph with |L|=|R|=n?

- A. O(m+n)
- B. O(mn)
- $C. O(mn^2)$
- $\mathbf{D}.\ O(m^2n)$

B. O(mnC) and C is a constant now.

Perfect matchings

Def. Given a graph G = (V, E), a subset of edges $M \subseteq E$ is a **perfect matching** if each node appears in exactly one edge in M.

Perfect matchings

Def. Given a graph G = (V, E), a subset of edges $M \subseteq E$ is a **perfect matching** if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly, we must have |L| = |R| = n.
- Which other conditions are necessary?
- Which other conditions are sufficient?

Perfect matchings (cont.)

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. Each node in S has to be matched to a different node in N(S).

Hall's marriage theorem

Theorem. [Frobenius 1917, Hall 1935] Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. \Rightarrow This is the previous observation.

Hall's marriage theorem (cont.)

Pf. \Leftarrow Suppose G does not have a perfect matching.

- Formulate as a max-flow problem and let (A, B) be a min cut in G'.
 - By max-flow min-cut theorem, cap(A,B) < |L|.
- Define $L_A=L\cap A, L_B=L\cap B, R_A=R\cap A.$
 - $cap(A,B) = |L_B| + |R_A| \Rightarrow |R_A| < |L| |L_B| = |L_A|$.
 - Min-cut can't use ∞ edges $\Rightarrow N(L_A) \subseteq R_A$.
 - $|N(L_A)| \leq |R_A| < |L_A|.$
- Choose $S = L_A$, contrapositive.

$$egin{aligned} L_A &= \{2,4,5\} \ L_B &= \{1,3\} \ R_A &= \{2',5'\} \ N(L_A) &= \{2',5'\} \end{aligned}$$

Disjoint paths

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G=(V,E) and two nodes s and t, find the max number of edge-disjoint $s \rightsquigarrow t$ paths.

Ex. Communication networks.

Edge-disjoint: Max-flow

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Pf. \Rightarrow Let P_1, \ldots, P_k be k edge-disjoint $s \rightsquigarrow t$ paths in G.

- Set f(e) = 1: edge e participates in some path; 0: otherwise.
- Since paths are edge-disjoint, f is a flow of value k.

Edge-disjoint: Max-flow (cont.)

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Pf. \Leftarrow Let f be an integral flow in G' of value k.

- Consider edge (s, u) with f(s, u) = 1.
 - by flow conservation, there exists an edge (u,v) with f(u,v)=1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

Edge-disjoint: Max-flow solution

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Corollary. Can solve edge-disjoint paths problem via max-flow formulation. Pf.

- Integrality theorem \Rightarrow there exists a max flow f^* in G' that is integral.
- 1-1 correspondence ⇒ f* corresponds to max number of edge-disjoint s → t paths in G.

Network connectivity

Def. A set of edges $F \subseteq E$ disconnects t from s if every $s \leadsto t$ path uses at least one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Pf. \leq

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every s → t path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$.

Menger's theorem (cont.)

Theorem. [Menger 1927] The max number of edge-disjoint $s \leadsto t$ paths equals the min number of edges whose removal disconnects t from s.

$Pf. \ge$

- Suppose max number of edge-disjoint s → t paths is k.
- Then value of max flow = k.
- Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s.

Quiz: edge-disjoint paths

How to find the max number of edge-disjoint paths in an undirected graph?

- A. Solve the edge-disjoint paths problem in a digraph (by replacing each undirected edge with two antiparallel edges).
- B. Solve a max flow problem in an undirected graph.
- C. Both A and B.
- D. Neither A nor B.

Quiz: edge-disjoint paths

How to find the max number of edge-disjoint paths in an undirected graph?

- A. Solve the edge-disjoint paths problem in a digraph (by replacing each undirected edge with two antiparallel edges).
- **B**. Solve a max flow problem in an undirected graph.
- C. Both A and B.
- D. Neither A nor B.

C. both are fine.

Edge-disjoint: undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G=(V,E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Undirected Edge-disjoint: Max-flow

Max-flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Observation. Two paths P_1 and P_2 may be edge-disjoint in the digraph but not edge-disjoint in the undirected graph.

• if P_1 uses edge (u, v) and P_2 uses its antiparallel edge (v, u)

Undirected Menger's theorem

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e': either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

Pf. [by induction on number of such pairs]

- Suppose f(e) > 0 and f(e') > 0 for a pair of antiparallel edges e and e'.
- Set $f(e) = f(e) \delta$ and $f(e') = f(e') \delta$, where $\delta = \min\{f(e), f(e')\}$.
 - they cancel each other
- f is still a flow of the same value but has one fewer such pair.

Undirected Menger's theorem (cont.)

Max-flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e': either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

Theorem. Max number of edge-disjoint $s \rightsquigarrow t$ paths = value of max flow. **Pf**. Similar to proof in digraphs; use lemma.

More Menger theorems

Theorem. Given an *undirected* graph and two nodes s and t, the max number of *edge-disjoint* s-t paths equals the min number of edges whose removal disconnects s and t.

Theorem. Given an *undirected* graph and two nonadjacent nodes s and t, the max number of internally *node-disjoint* s-t paths equals the min number of internal nodes whose removal disconnects s and t.

Theorem. Given a *directed* graph with two nonadjacent nodes s and t, the max number of internally *node-disjoint* $s \rightsquigarrow t$ paths equals the min number of internal nodes whose removal disconnects t from s.

Extensions to max flow

Quiz: Extensions to max flow

Which extensions to max flow can be easily modeled?

- A. Multiple sources and multiple sinks.
- **B**. Undirected graphs.
- C. Lower bounds on edge flows.
- D. All of the above.

Multiple sources & sinks

Def. Given a digraph G=(V,E) with edge capacities $c(e)\geq 0$ and multiple source nodes and multiple sink nodes, find max flow that can be sent from the source nodes to the sink nodes.

Max-flow formulation.

- Add a new source node s and sink node t.
- For each original source node s_i add edge (s, s_i) with capacity ∞ .
- For each original sink node t_i , add edge (t_i, t) with capacity ∞ .

Claim. 1-1 correspondence between flows in G and G'.

Circulation w/ supplies & demands

Def. Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$ and node demands d(v), a **circulation** is a function f(e) that satisfies:

- [capacity] For each $e \in E: 0 \leq f(e) \leq c(e)$
- ullet [conservation] For each $v \in V: \sum_{e ext{ into } v} f(e) \sum_{e ext{ out } v} f(e) = d(v)$

Max-flow formulation.

- Add new source s and sink t.
- For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
- For each v with d(v) > 0, add edge (v, t) with capacity d(v).

Claim. G has circulation iff G' has max flow of value $D=\sum_{v:d(v)>0}d(v)=\sum_{v:d(v)<0}-d(v)$

ullet ie., saturates all edges leaving s and entering t

Circulation w/S & D

Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V, E, c, d), there does *not* exist a circulation iff there exists a node partition (A, B) such that $\sum_{v \in B} d(v) > cap(A, B)$.

 \bullet ie., demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B

Pf sketch. Look at min cut in G'.

Circulation w/S & D & lower bounds

Def. Given a digraph G=(V,E) with edge capacities $c(e) \geq 0$, lower bounds $l(e) \geq 0$, and node demands d(v), a circulation f(e) is a function that satisfies:

- ullet [capacity] For each $e \in E: l(e) \leq f(e) \leq c(e)$
- [conservation] For each $v \in V$: $\sum_{e \text{ into } v} f(e) \sum_{e \text{ out } v} f(e) = d(v)$

Circulation problem with lower bounds. Given (V, E, l, c, d), does there exist a feasible circulation?

Circulation w/S & D & LB

Max-flow formulation. Model lower bounds as circulation with demands.

- Send l(e) units of flow along edge e.
- Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'. Moreover, if all demands, capacities, and lower bounds in G are integers, then there exists a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - l(e) is a circulation in G'.

Survey design

Survey Design Problem

Goal. Design a survey that meets following specs, if possible.

- Design survey asking n₁ consumers about n₂ products.
- Can survey consumer i about product j only if they own it.
- Ask consumer i between c_i and c'_i questions.
- Ask between p_j and p'_j consumers about product j.

Bipartite perfect matching. Special case when $c_i = c'_i = p_j = p'_j = 1$.

Survey Design: Max-flow

Max-flow formulation. Model as a circulation problem with lower bounds.

- Add edge (i, j) if consumer j owns product i.
- Add edge from s to consumer j.
- Add edge from product i to t.
- Add edge from t to s.
- All demands = 0.
- Integer circulation ⇔ feasible survey design.

Airline scheduling

Airline Scheduling Problem

Airline scheduling.

- Complex computational problem faced by airline carriers.
- Must produce schedules that are efficient in terms of equipment usage, crew allocation, and customer satisfaction.
 - even in presence of unpredictable events, such as weather and breakdowns
- One of largest consumers of high-powered algorithmic techniques.

"Toy problem".

- Manage flight crews by reusing them over multiple flights.
- Input: set of k flights for a given day.
- Flight i leaves origin o_i at time s_i and arrives at destination d_i at time f_i .
- Minimize number of flight crews.

Airline Scheduling: Circulation

Circulation formulation. [to see if c crews suffice]

- For each flight i, include two nodes u_i and v_i .
- Add source s with demand -c, and edges (s, u_i) with capacity 1.
- Add sink t with demand c, and edges (v_i, t) with capacity 1.
- For each i, add edge (u_i, v_i) with lower bound and capacity 1.
- if flight j reachable from i, add edge (v_i, uj) with capacity 1.

Airline Scheduling: analysis

Theorem. The airline scheduling problem can be solved in $O(k^3 \log k)$ time. **Pf**.

- k = number of flights.
- c = number of crews (unknown).
- O(k) nodes, $O(k^2)$ edges.
- At most k crews needed.
 - \Rightarrow solve log_2k circulation problems.
 - \circ binary search for min value c^*
- Value of any flow is between 0 and k.
 - ullet \Rightarrow at most k augmentations per circulation problem.
- Overall time = $O(k^3 \log k)$.

Airline Scheduling: analysis

Theorem. The airline scheduling problem can be solved in $O(k^3 \log k)$ time. **Pf**.

- k = number of flights.
- c = number of crews (unknown).
- O(k) nodes, $O(k^2)$ edges.
- At most k crews needed.
 - \Rightarrow solve log_2k circulation problems.
 - \circ binary search for min value c^*
- Value of any flow is between 0 and k.
 - ullet \Rightarrow at most k augmentations per circulation problem.
- Overall time = $O(k^3 \log k)$.

Remark. Can solve in $O(k^3)$ time by formulating as *minimum-flow* problem.

Airline Scheduling: practical discussion

Remark. We solved a toy version of a real problem.

Real-world problem models countless other factors:

- Union regulations: e.g., flight crews can fly only a certain number of hours in a given time window.
- Need optimal schedule over planning horizon, not just one day.
- Approaching deadhead has a cost.
- Flights don't always leave or arrive on schedule.
- Simultaneously optimize both flight schedule and fare structure.

Message.

- Our solution is a generally useful technique for efficient reuse of limited resources but trivializes real airline scheduling problem.
- Flow techniques useful for solving airline scheduling problems (and are widely used in practice).
- Running an airline efficiently is a very difficult problem.

Image segmentation

Image Segmentation Problem

Image segmentation.

- Divide image into coherent regions.
- Central problem in image processing.

Ex. Separate human from background and reconstruct a new scene.

FG/BG segmentation

Foreground / background segmentation.

- Label each pixel as belonging to foreground or background.
- V = set of pixels, E = pairs of neighboring pixels.
 - $a_i \geq 0$ is likelihood pixel i in foreground.
 - $b_j \ge 0$ is likelihood pixel i in background.
 - $p_{ij} \ge 0$ is separation penalty for labeling one of neighboring i and j as foreground, and the other as background.

FG/BG segmentation: goals

- Accuracy: if $a_i > b_j$ in isolation, prefer to label i in foreground.
- Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.
- Find partition (A, B) that maximizes:

$$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, |A \cap \{i,j\}| = 1} p_{ij}$$

FG/BG segmentation: min-cut?

Formulate as min-cut problem. Issues:

- · Maximization.
- No source or sink.
- · Undirected graph

FG/BG segmentation: min-cut?

Formulate as min-cut problem. Issues:

- Maximization.
- No source or sink.
- Undirected graph

Turn into minimization problem.

- Maximizing: $\sum_{i \in A} a_i + \sum_{j \in B} b_j \sum_{(i,j) \in E, |A \cap \{i,j\}| = 1} p_{ij}$
 - ullet is equivalent to minimizing: $(\sum_{i\in V}a_i+\sum_{j\in V}b_j)-(\sum_{i\in A}a_i+\sum_{j\in B}b_j-\sum_{(i,j)\in E,|A\cap\{i,j\}|=1}p_{ij})$
 - or alternatively:

$$\sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E, |A \cap \{i,j\}| = 1} p_{ij}$$

FG/BG segmentation: min-cut

Formulate as min-cut problem G' = (V', E').

- Include node for each pixel.
- Use two antiparallel edges instead of undirected edge.
- Add source s to correspond to foreground.
- Add sink t to correspond to background.

FG/BG segmentation: min-cut (cont.)

Consider min-cut (A, B) in G'.

• A =foreground.

$$cap(A,B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$$

Precisely the quantity we want to minimize.

Grabcut image segmentation

Grabcut. [Rother-Kolmogorov-Blake 2004]

"GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother*

Vladimir Kolmogorov[†] Microsoft Research Cambridge, UK Andrew Blake[‡]

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

integrated in PowerPoint.

Project selection

Project Selection Problem

Projects with prerequisites.

- Set of possible projects P: project v has associated revenue p_v .
 - value can be positive or negative
- Set of prerequisites E: $(v, w) \in E$ means w is a prerequisite for v.
- A subset of projects A ⊆ P is feasible if the prerequisite of every project in A also belongs to A.

Project selection problem. Given a set of projects P and prerequisites E, choose a feasible subset of projects to maximize revenue.

aka. Maximum Weight Closure Problem

Project selection: prerequisite graph

Prerequisite graph. Add edge (v, w) if w is a prerequisite for v.

Project selection: min-cut

Min-cut formulation.

- Assign a capacity of ∞ to each prerequisite edge.
- Add edge (s, v) with capacity p_v if $p_v > 0$.
- Add edge (v,t) with capacity $-p_v$ if $p_v < 0$.
- For notational convenience, define $p_s = p_t = 0$.

Project selection: min-cut (cont.)

Claim. (A,B) is min-cut iff $A-\{s\}$ is an optimal set of projects.

- Infinite capacity edges ensure $A-\{s\}$ is feasible.
 - cut never cross ∞: prerequisite must go together.
- Max revenue because:

$$ullet cap(A,B) = \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$$

Open-pit mining

Open-pit mining. [studied since early 1960s]

- Blocks of earth are extracted from surface to retrieve ore.
- Each block v has net value p_v = value of ore processing cost.
- Can't remove block v until both blocks w and x are removed.

Tournament elimination

Q. Which teams have a chance of finishing the season with the most wins?

Т	W	L	Р	Α	В	С	D
Α	83	71	8	-	1	6	1
В	80	79	3	1	2	0	2
С	78	78	6	6	0		0
D	77	82	3	1	2	0	

Q. Which teams have a chance of finishing the season with the most wins?

Т	W	L	Р	Α	В	C	D
Α	83	71	8	5	1	6	1
В	80	79	3	1	2	0	2
С	78	78	6	6	0	*	0
D	77	82	3	1	2	0	, .

D is mathematically eliminated.

- D finishes with ≤ 80 wins.
- A already has 83 wins.

Remark. This appear to be the only reasoning sports writers aware of.

Q. Which teams have a chance of finishing the season with the most wins?

Т	Win	Lose	to Play	Α	В	C	D
Α	83	71	8	-	1	6	1
В	80	79	3	1	223	0	2
С	78	78	6	6	0	-	0
D	77	82	3	1	2	0	3.53

B is mathematically eliminated.

- B finishes with ≤ 83 wins.
- Either C or A will finish with ≥ 84 wins.

Q. Which teams have a chance of finishing the season with the most wins?

Т	Win	Lose	to Play	Α	В	C	D
Α	83	71	8	-	1	6	1
В	80	79	3	1	243	0	2
С	78	78	6	6	0	-	0
D	77	82	3	1	2	0	3.5

B is mathematically eliminated.

- B finishes with ≤ 83 wins.
- Either C or A will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they're against.

Tournament Elimination Problem

Current standings.

- Set of teams S.
- Distinguished team $z \in S$.
- Team x has won w_x games already.
- Teams x and y play each other r_{xy} additional times.

Tournament elimination problem. Given the current standings, is there any outcome of the remaining games in which team z finishes with the most (or tied for the most) wins?

[Schwartz 1966] Possible winners in partially completed tournaments

Tournament Elimination: max-flow

Can team 4 finish with most wins?

- Assume team 4 wins all remaining games $\Rightarrow w_4 + r_4$ wins.
- Arrange remaining games so that all teams have $\leq w_4 + r_4$ wins.

Tournament Elimination: max-flow (cont.)

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving s. **Pf**.

- Integrality theorem ⇒ each remaining game between x and y added to number of wins for team x or team y.
- Capacity on (x, t) edges ensure no team wins too many games.

An explanation for sports writers

Q. Which teams have a chance of finishing the season with the most wins?

Т	Win	Lose	to Play	Α	В	C	D	E
Α	75	59	28	-	3	8	7	3
В	71	63	28	3		2	7	4
С	69	66	27	8	2		0	0
D	63	72	27	7	7	0	-	0
Ε	49	86	27	3	4	0	0	2

An explanation for sports writers

Q. Which teams have a chance of finishing the season with the most wins?

T	Win	Lose	to Play	Α	В	C	D	E
Α	75	59	28	-	3	8	7	3
В	71	63	28	3	(-	2	7	4
С	69	66	27	8	2		0	0
D	63	72	27	7	7	0	-	0
Е	49	86	27	3	4	0	0	2

E is mathematically eliminated.

- E finishes with $\leq 49 + 86 = 76$ wins.
- Wins for $R = \{A, B, C, D\} = 75 + 71 + 69 + 63 = 278$.
- Remaining games among $\{A, B, C, D\} = 3 + 8 + 7 + 2 + 7 = 27$.
- Average team in R wins 305/4 = 76.25 games.

Certificate of elimination

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T^* : $w_z+g_z<\frac{w(T^*)+g(T^*)}{|T^*|}$.

ullet # wins: $w(T) = \sum_{i \in T} w_i$; # remaining: $g(T) = \sum_{\{x,y\} \subseteq T} g_{xy}$

Pf. ←

- Suppose there exists T* ⊆ S satisfy certificate.
- Then, teams in T^* win at least $(w(T^*) + g(T^*))/|T^*|$ games on average.
- This exceeds maximum number that team z can win.

Certificate of elimination (cont.)

$Pf. \Rightarrow$

- Use max-flow formulation, and consider min cut (A, B).
- Let T* = team nodes on source side A of min cut.
- Observe that game node x- $y \in A$ iff both $x \in T^*$ and $y \in T^*$.
 - infinite capacity ensure x-y \in A, then both x \in A and y \in A
 - if $x \in A$ and $y \in A$ but $x y \notin A$, then adding x y to A decreases the capacity of the cut by g_{xy}

Certificate of elimination (cont.)

Pf. ⇒

• Since team z is eliminated, by MF-MC theorem, $g(S - \{z\})$ is not saturated, so:

$$egin{aligned} g(S-\{z\}) > cap(A,B) \ &= [g(S-\{z\})-g(T^*)] + [\sum_{x \in T^*} (w_z + g_z - w_x)] \ &= [g(S-\{z\})-g(T^*)] + [w(T^*) + |T^*|(w_z + g_z)] \end{aligned}$$

ullet Rearranging terms: $w_z + g_z < rac{w(T^*) + g(T^*)}{|T^*|}$

