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Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model.

» Data mining.

e Open-pit mining.

« Bipartite matching.

» Network reliability.

» Baseball elimination.

« [mage segmentation.

» Network connectivity.

» Markov random fields.

« Distributed computing.

« Security of statistical data.

« Eqgalitarian stable matching.

« Network intrusion detection.

« Multi-camera scene reconstruction.
« Sensor placement for homeland security.
« Many, many, more.



Bipartite matching
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Max matching

Def. Given an undirected graph G = (V, E), subset of edges M C FE is a matching
if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.
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Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R
such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G = (L U R, E), find a max-cardinality
matching.




Bipartite matching: max-flow formulation

Formulation.

 Create digraph G' = (LU R U {s, t}, E').

« Direct all edges from L to R, and assign infinite (or unit) capacity.
« Add unit-capacity edges from s to each node in L.

« Add unit-capacity edges from each node in R to t.
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Max-flow formulation: correctness

Theorem. 1-1 correspondence between matchings of cardinality & in G and integral
flows of value k in G'.

Pf. =

e Let M be a matching in G of cardinality k.

« Consider flow f that sends 1 unit on each of the & corresponding paths.
« fis aflow of value k.

">
4

-
e

B




i

Max-flow formulation: correctness (cont.)

Theorem. 1-1 correspondence between matchings of cardinality & in G and integral
flows of value k in G'.

Pf. <

« Let f be an integral flow in G’ of value k.

« Consider M = set of edges from L to R with f(e) = 1.
» each node in L and R participates in at most one edge in M
» |M|=k:cut(LU{s},RU{t}) has k leaving and 0 entering
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Max-flow for bipartite matching

Theorem. 1-1 correspondence between matchings of cardinality & in G and integral
flows of value k in G'.

Corollary. Can solve bipartite matching problem via max-flow formulation.
Pf.

« Integrality theorem = there exists a max flow f* in G’ that is integral.
» 1-1 correspondence = f* corresponds to max-cardinality matching.
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Quiz: bipartite graph via Ford-Fulkerson

What is running time of Ford-Fulkerson algorithms to find a max-cardinality maiching
in a bipartite graph with |L| = |R| = n?

A .O(m+n)
B. O(mn)
C. O(mn?)
D. O(m?n)



Quiz: bipartite graph via Ford-Fulkerson

What is running time of Ford-Fulkerson algorithms to find a max-cardinality maiching
in a bipartite graph with |L| = |R| = n?

A .O(m+n)
B. O(mn)
C. O(mn?)
D. O(m?n)

B. O(mnC) and C is a constant now.



Perfect matchings

Def. Given a graph G = (V, E), a subset of edges M C E is a perfect matching if
each node appears in exactly one edge in M.
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Perfect matchings

Def. Given a graph G = (V, E), a subset of edges M C E is a perfect matching if
each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

« Clearly, we must have |L| = |R| = n.
« Which other conditions are necessary?
« Which other conditions are sufficient?
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Perfect matchings (cont.)

Notation. Let S be a subset of nodes, and let N(.S) be the set of nodes adjacent to
nodesin S.

Observation. If a bipartite graph G = (L U R, E') has a perfect matching, then
IN(S)| = |S| for all subsets S C L.

Pf. Each node in S has to be matched to a different node in N (S).
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Hall’s marriage theorem

Theorem. [Frobenius 1917, Hall 1935] Let G = (L U R, E') be a bipartite graph with

\L| = |R|. Then, graph G has a perfect matching iff |[N(S)| > |S| for all subsets
S5C L,

Pt. = This is the previous observation.
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Hall’s marriage theorem (cont.)

Pf. <= Suppose G does not have a perfect matching.

« Formulate as a max-flow problem and let (A, B) be a min cut in G'.
= By max-flow min-cut theorem, cap(A, B) < |L|.
e DefineLy=LNALg=LNB,Ry=RNA.
* cap(A, B) = |Lg|+ [Ra| = |Ra| < |L| — |Lp| = |La|.
= Min-cut can't use oo edges = N(L4) € Ry.
o |[N(La)| < |Ra| < |Lal.
« Choose § = L 4, contrapositive.
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Disjoint paths
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Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E') and two nodes s and ¢,
find the max number of edge-disjoint s ~~ ¢ paths.

Ex. Communication networks.

&

digraph G
2 edge~disjoint paths
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Edge-disjoint: Max-flow
Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s ~+ ¢ paths in G and
integral flows of value k in G'.

Pf. = Let P,,..., P be k edge-disjoint s ~ t pathsin G.

» Set f(e) = 1 : edge e participates in some path; 0 : otherwise.

« Since paths are edge-disjoint, f is a flow of value k.
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Edge-disjoint: Max-flow (cont.)
Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s ~+ ¢ paths in G and
integral flows of value k in G'.

Pf. — Let f be an integral flow in G’ of value k.

 Consider edge (s, u) with f(s,u) = 1.
= by flow conservation, there exists an edge (u, v) with f(u,v) = 1
= continue until reach ¢, always choosing a new edge

» Produces k (not necessarily simple) edge-disjoint paths.
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Edge-disjoint: Max-flow solution
Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s ~+ ¢ paths in G and
integral flows of value k in G'.

Corollary. Can solve edge-disjoint paths problem via max-flow formulation.
Pf.

« Integrality theorem =- there exists a max flow f* in G’ that is integral.

e 1-1 correspondence = f* corresponds to max number of edge-disjoint s ~- ¢
paths in G.
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Network connectivity

Def. A set of edges F' C E disconnects t from s if every s ~ t path uses at least
one edge in F'.

Network connectivity. Given a digraph G = (V, E) and two nodes s and ¢, find min
number of edges whose removal disconnects t from s.
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Menger’s theorem

Theorem. [Menger 1927] The max number of edge-disjoint s ~+ t paths equals the
min number of edges whose removal disconnects t from s.
Pf. <

« Suppose the removal of F C E disconnects t from s, and |F| = k.
« Every s ~+ { path uses at least one edge in F'.
« Hence, the number of edge-disjoint paths is < k.
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Menger’s theorem (cont.)

Theorem. [Menger 1927] The max number of edge-disjoint s ~+ t paths equals the
min number of edges whose removal disconnects t from s.
Pt. >

« Suppose max number of edge-disjoint s ~~ t paths is k.

e Then value of max flow = k.

« Max-flow min-cut theorem =- there exists a cut (A, B) of capacity k.
 Let F be set of edges going from Ato B.

e |F| = k and disconnects ¢ from s.
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Quiz: edge-disjoint paths
How to find the max number of edge-disjoint paths in an undirected graph?

A. Solve the edge-disjoint paths problem in a digraph (by replacing each undirected
edge with two antiparallel edges).

B. Solve a max flow problem in an undirected graph.

C. Both A and B.

D. Neither A nor B.
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Quiz: edge-disjoint paths
How to find the max number of edge-disjoint paths in an undirected graph?

A. Solve the edge-disjoint paths problem in a digraph (by replacing each undirected
edge with two antiparallel edges).

B. Solve a max flow problem in an undirected graph.

C. Both A and B.

D. Neither A nor B.

C. both are fine.



i

Edge-disjoint: undirected graphs
Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E)
and two nodes s and ¢, find the max number of edge-disjoint s — ¢ paths.
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Undirected Edge-disjoint: Max-flow

Max-flow formulation. Replace each edge with two antiparallel edges and assign
unit capacity to every edge.

Observation. Two paths P, and P, may be edge-disjoint in the digraph but not
edge-disjoint in the undirected graph.

e if P, uses edge (u,v) and P, uses its antiparallel edge (v, u)
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Undirected Menger’s theorem

Lemma. In any flow network, there exists a maximum flow f in which for each pair of

antiparallel edges e and ¢’: either f(e) = 0 or f(e') = 0 or both. Moreover, integrality
theorem slill holds.

Pf. [ by induction on number of such pairs ]

« Suppose f(e) > 0and f(e') > 0 for a pair of antiparallel edges e and e’.

e Set f(e) = f(e) —dand f(e') = f(e') — &, where § = min{f(e), f(e')}.
= they cancel each other

« fis still a flow of the same value but has one fewer such pair.
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Undirected Menger’s theorem (cont.)

Max-flow formulation. Replace each edge with two antiparallel edges and assign
unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of

antiparallel edges e and e': either f(e) = 0 or f(e') = 0 or both. Moreover, integrality
theorem still holds.

Theorem. Max number of edge-disjoint s ~~ t paths = value of max flow.
Pf. Similar to proof in digraphs; use lemma.
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More Menger theorems

Theorem. Given an undirected graph and two nodes s and t, the max number of

edge-disjoint s-1 paths equals the min number of edges whose removal disconnects
sandt.

Theorem. Given an undirected graph and two nonadjacent nodes s and ¢, the max
number of internally node-disjoint s-t paths equals the min number of internal nodes
whose removal disconnects s and .

Theorem. Given a directed graph with two nonadjacent nodes s and t, the max
number of internally node-disjoint s ~~ t paths equals the min number of internal
nodes whose removal disconnects ¢ from s.
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Extensions to max flow



Quiz: Extensions to max flow

Which extensions to max flow can be easily modeled?

A. Multiple sources and multiple sinks.
B. Undirected graphs.

C. Lower bounds on edge flows.

D. All of the above.
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Multiple sources & sinks

Def. Given a digraph G = (V, E') with edge capacities ¢(e) = 0 and multiple source

nodes and multiple sink nodes, find max flow that can be sent from the source nodes
to the sink nodes.

Max-flow formulation.

« Add a new source node s and sink node t.
« For each original source node s; add edge (s, s;) with capacity oc.
 For each original sink node ¢;, add edge (t;,t) with capacity oc.
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Claim. 1-1 correspondence between flows in G and G'.
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Circulation w/ supplies & demands

Def. Given a digraph G = (V, E') with edge capacities ¢(e) > 0 and node demands
d(v), a circulation is a function f(e) that satisfies:

* [capacity] Foreache € E : 0 < f(e) < c(e)
« [conservation] Foreachv € V : 3 . f(e) — >, oo f(€) = d(v)

Max-flow formulation.

» Add new source s and sink t.
« For each v with d(v) < 0, add edge (s, v) with capacity —d(v).
« For each v with d(v) > 0, add edge (v, t) with capacity d(v).
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Claim. G has circulation iff G" has max flow of value D = 3\, d(v)
Zv:d{u}{l} _d(“)

* |e., saturates all edges leaving s and entering ¢
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Circulation w/S & D

Integrality theorem. If all capacities and demands are integers, and there exists a
circulation, then there exisis one that is integer-valued.
Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V, E, ¢, d), there does not exist a circulation iff there exists a node
partition (A, B) suchthat > _,d(v) > cap(A, B).

e ie., demand by nodes in B exceeds supply of nodes in B plus max capacity of
edges going from A to B

Pf sketch. Look at min cutin G'.
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Circulation w/ S & D & lower bounds

Def. Given a digraph G = (V, E') with edge capacities c¢(e) > 0, lower bounds
l(e) > 0, and node demands d(v), a circulation f(e) is a function that satisfies:

* [capacity] Foreache € F : l(e) < f(e) < c(e)
e [conservation] Foreachv e V : 3 . f(e) — >, ... f(e) =d(v)

Circulation problem with lower bounds. Given (V, E, [, ¢,d), does there exist a
feasible circulation?
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Circulationw/S &D & LB

Max-flow formulation. Model lower bounds as circulation with demands.

« Send I(e) units of flow along edge e.
« Update demands of both endpoints.

lower bound upper bound capacity

@— i —@ o— '@

div) d(w) d(v) +2 elw) -2
flow network G flow network G’

Theorem. There exists a circulation in G iff there exists a circulation in G'. Moreover,
if all demands, capacities, and lower bounds in G are integers, then there exists a
circulation in GG that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) — l(e) is a circulation in G".



Survey design
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Survey Design Problem

Goal. Design a survey that meets following specs, if possible.

« Design survey asking n; consumers about ns products.
« Can survey consumer ¢ about product j only if they own it.

« Ask consumer i between ¢; and ¢; questions.
» Ask between p; and p; consumers about product ;.

Bipartite perfect matching. Special case when ¢; = ¢

—

pj =p; =1
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Survey Design: Max-flow
Max-flow formulation. Model as a circulation problem with lower bounds.

» Add edge (7, ) if consumer 7 owns product :.
« Add edge from s to consumer j.

» Add edge from product 7 to t.

« Add edge from t to s.

« All demands = 0.
« [nteger circulation <> feasible survey design.



Airline scheduling
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Airline Scheduling Problem

Airline scheduling.

« Complex computational problem faced by airline carriers.
« Must produce schedules that are efficient in terms of equipment usage, crew
allocation, and customer satisfaction.
= even in presence of unpredictable events, such as weather and breakdowns
« One of largest consumers of high-powered algorithmic techniques.

“Toy problem”.

» Manage flight crews by reusing them over multiple flights.

 Input: set of k flights for a given day.

» Flight 7 leaves origin o; at time s; and arrives at destination d; at time f;.
e Minimize number of flight crews.
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Airline Scheduling: Circulation
Circulation formulation. [to see if ¢ crews suffice]

» For each flight 7, include two nodes wu; and v;.

« Add source s with demand —c, and edges (s, u; ) with capacity 1.
 Add sink ¢ with demand ¢, and edges (v;, t) with capacity 1.

« For each 7, add edge (u;, v;) with lower bound and capacity 1.

« if flight 7 reachable from i, add edge (v;,uj) with capacity 1.

o can end day
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Airline Scheduling: analysis

Theorem. The airline scheduling problem can be solved in O(k* log k) time.
Pf.

* k =number of flights.
« ¢ = number of crews (unknown).
« O(k) nodes, O(k*) edges.
« At most k crews needed.

= = solve log2k circulation problems.

o binary search for min value ¢*

 Value of any flow is between 0 and k.

« = at most k& augmentations per circulation problem.
« Overall time = O(k® log k).
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Airline Scheduling: analysis

Theorem. The airline scheduling problem can be solved in O(k* log k) time.
Pf.

* k =number of flights.
« ¢ = number of crews (unknown).
« O(k) nodes, O(k*) edges.
« At most k crews needed.

= = solve log2k circulation problems.

o binary search for min value ¢*

 Value of any flow is between 0 and k.

« = at most k& augmentations per circulation problem.
« Overall time = O(k® log k).

Remark. Can solve in O(k*) time by formulating as minimum-flow problem.



Airline Scheduling: practical discussion

Remark. We solved a toy version of a real problem.

Real-world problem models countless other factors:

« Union requlations: e.qg., flight crews can fly only a certain number of hours in a
given time window.

» Need optimal schedule over planning horizon, not just one day.

« Approaching deadhead has a cost.

« Flights don't always leave or arrive on schedule.

« Simultaneously optimize both flight schedule and fare structure.

Message.

» Our solution is a generally useful technique for efficient reuse of limited resources
but trivializes real airline scheduling problem.

« Flow techniques useful for solving airline scheduling problems (and are widely
used in practice).

« Running an airline efficiently is a very difficult problem.
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Image segmentation



Image Segmentation Problem

Image segmentation.

 Divide image into coherent regions.
« Central problem in image processing.

Ex. Separate human from background and reconstruct a new scene.
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FG/BG segmentation
Foreground / background segmentation.

« Label each pixel as belonging to foreground or background.
« I/ = set of pixels, E' = pairs of neighboring pixels.
= a; > (0 is likelihood pixel ¢ in foreground.
= b; > 0is likelihood pixel i in background.
= pi; = 0is separation penalty for labeling one of neighboring ¢ and j as
foreground, and the other as background.
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FG/BG segmentation: goals

« Accuracy: if a; > b; in isolation, prefer to label i in foreground.

« Smoothness: if many neighbors of i are labeled foreground, we should be
inclined to label i as foreground.
e Find partition (A, B) that maximizes:
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FG/BG segmentation: min-cut?

Formulate as min-cut problem. Issues:

« Maximization.
« NO source or sink.
« Undirected graph
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FG/BG segmentation: min-cut?

Formulate as min-cut problem. Issues:

« Maximization.
« NO source or sink.
« Undirected graph

Turn into minimization problem.
« Maximizing: » ;. 4 a; + Z_j:—?ﬂ bj — Z{f.j}sa An{i,j}|=1 Pij
= is equivalent to minimizing: (3 ;. ai + >y bj) — (Xcaai + D icpbj —

E{:‘J]-‘iﬁ‘,.ﬂw{f,j} =] Pij)
= Or alternatively:

Z{Ij ‘|‘Zb,+ Z Pij
jeB icA

(iJ)eE,|Andi,j =1



i

FG/BG segmentation: min-cut
Formulate as min-cut problem G’ = (V', E').

 Include node for each pixel.

» Use two antiparallel edges instead of undirected edge.
« Add source s to correspond to foreground.

» Add sink £ to correspond to background.




i

FG/BG segmentation: min-cut (cont.)
Consider min-cut (4, B) in G".

« A = foreground.

cap(A, B) = Zﬂj + Z b; + Z Dij

jEB i€A (i,j)eE ic A jeB

» Precisely the quantity we want to minimize.
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Grabcut image segmentation

Grabcut. [ Rother-Kolmogorov-Blake 2004 ]

“GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother® Viadimir Kolmogorow' Andrew Blake*
Microsoft Research Cambridge, UK

Figure I Three examples of GrabCut . The user drags a ecangle loosely aromd an object. The objeat is then extracted automatically.

« integrated in PowerPoint.
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Project selection
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Project Selection Problem

Projects with prerequisites.

« Set of possible projects P: project v has associated revenue p,.
= value can be positive or negative

» Set of prerequisites E: (v,w) € E means w is a prerequisite for v.

« A subset of projects A C P is feasible if the prerequisite of every projectin A
also belongs to A.

Project selection problem. Given a set of projects P and prerequisites E, choose a
feasible subset of projects to maximize revenue.

» aka. Maximum Weight Closure Problem
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Project selection: prerequisite graph

Prerequisite graph. Add edge (v, w) if w is a prerequisite for v.
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Project selection: min-cut

Min-cut formulation.

» Assign a capacity of co to each prerequisite edge.
« Add edge (s, v) with capacity p,, if p, > 0.

» Add edge (v,t) with capacity —p, if p, < 0.

» For notational convenience, define p, = p; = 0.
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Project selection: min-cut (cont.)
Claim. (A, B) is min-cut iff A — {s} is an optimal set of projects.

« Infinite capacity edges ensure A — {s} is feasible.
= cut never cross oco: prerequisite must go together.
« Max revenue because:
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Open-pit mining
Open-pit mining. [studied since early 1960s]

» Blocks of earth are extracted from surface to retrieve ore.
» Each block v has net value p, = value of ore - processing cost.
« Can't remove block v until both blocks w and x are removed.
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Tournament elimination



Tournament: who is eliminated?

Q. Which teams have a chance of finishing the season with the most wins?

T W L P A BUCD

A 8 71 8 - 1 6 1
B 80 /9 3 1 - 0 2
C 78 78 6 6 0 - 0
D 77 82 3 1 2 0 -
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Tournament: who is eliminated?

Q. Which teams have a chance of finishing the season with the most wins?

T W L P A BUCD

A 8 71 8 - 1 6 1
B 80 /9 3 1 - 0 2
C 78 78 6 6 0 - 0
D 77 82 3 1 2 0 -

D is mathematically eliminated.

» D finishes with < 80 wins.
» A already has 83 wins.

Remark. This appear to be the only reasoning sports writers aware of.
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Tournament: who is eliminated?

Q. Which teams have a chance of finishing the season with the most wins?

T Win Lose toPlay A B C D

A 83 71 8 - 1 6 1
B 80 79 3 1 - 0 2
C 78 78 6 6 0 - O
D 77 82 3 T2 0 -

B Is mathematically eliminated.

» B finishes with < 83 wins.
« Either C or A will finish with > 84 wins.
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Tournament: who is eliminated?

Q. Which teams have a chance of finishing the season with the most wins?

T Win Lose toPlay A B C D

A 83 71 8 - 1 6 1
B 80 79 3 1 - 0 2
C 78 78 6 6 0 - O
D 77 82 3 T2 0 -

B Is mathematically eliminated.

» B finishes with < 83 wins.
» Either C or A will finish with > 84 wins.

Observation. Answer depends not only on how many games already won and left to
play, but on whom they're against.



Tournament Elimination Problem

Current standings.

» Set of teams S.

» Distinguished team z € S.

« Team x has won w, games already.

« Teams x and y play each other r,, additional times.

Tournament elimination problem. Given the current standings, is there any
outcome of the remaining games in which team =z finishes with the most (or tied for

the most) wins?

« [Schwartz 1966] Possible winners in partially completed tournaments
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Tournament Elimination: max-flow

Can team 4 finish with most wins?

« Assume team 4 wins all remaining games = wy + r4 WINS.
» Arrange remaining games so that all teams have < w4 + r4 Wins.
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Tournament Elimination: max-flow (cont.)

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving s.
Pf.

 Integrality theorem =- each remaining game between x and y added to number
of wins for team z or team y.
« Capacity on (z,t) edges ensure no team wins too many games.
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An explanation for sports writers

Q. Which teams have a chance of finishing the season with the most wins?

T Win Lose toPlay A B C D E

A 75 59 28 - 3 8 7 3
B 71 63 28 3 - 2 7 4
C 69 66 27 8§ 2 - 0 0
D 63 72 27 £ & 0 = ¥
E 49 86 27 3 4 0 0 -
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E is mathematically eliminated.

» E finishes with < 49 + 86 = 76 wins.

e« WinsforR = {A,B,C,D} =75+ 71+ 69 + 63 = 278.

« Remaining games among {A, B,C,D} =3+ 8+ 7+ 2+ 7 = 27.
» Average team in R wins 305/4 = 76.25 games.
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Certificate of elimination

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T

w(T" )+g(T")
w, 3 g: < kel .

o 7 Wins: 'IUI:T) — ZE.ET'IU,'; # remaining: Q(T} - Z{J:*y]i_"T g.ry
Pf. <

e Suppose there exists T* C § satisfy certificate.
« Then, teams in T* win at least (w(T*) + ¢(7™))/|T*| games on average.
« This exceeds maximum number that team z can win.
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Certificate of elimination (cont.)
Pf. =

» Use max-flow formulation, and consider min cut (A, B).
» Let T =team nodes on source side A of min cut.
» Observe that game node z-y € Aiffbothz € T* andy € T*.
= infinite capacity ensure z-y € A, thenbothz € Aandy € A
s ffze Aandy € A but z-y ¢ A, then adding z-y to A decreases the
capacity of the cut by g,
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Certificate of elimination (cont.)
Pf. =

« Since team z is eliminated, by MF-MC theorem, g(S — {z}) is not saturated, so:

9(S — {z}) > cap(A4, B)
=[9(8 = {2}) — g(T) + [ (w: + g: — w,)]

= [g(8 —{z}) —g(T")] + [w(T") + |T" |(w. + g.)]

w(T*)+9(T")

e Rearranging terms: w, + g. < T






