Algorithm I

7. Network Flow |

WU Xiaokun 2885

xkun.wu [at] gmail

Flow and Cut

Flow and Cut - supply

il

Max-flow and min-cut problems

i

Flow network
A flow network is atuple G = (V, E, s, t,¢).

e Digraph (V, E') with source s € V and sinkt € V.
» Capacityc(e) = Oforeache € E.

Intuition. Material flowing through a transportation network; material originates at
source and is sent to sink.

capacity

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s € A and t € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

 cap(A4,B) = ¥, o, ac(e)

g e,
= .
\ \"“ ¥ don't Include edges
" "y x_'_ .,.-' from & to A
oy "-x_ ;
= ®—i——
capacity = IU + 8 + 1& =34/

Min-cut problem. Find a cut of minimum capacity.

i

Maximum-flow problem

Def. An st-flow (flow) f is a function that satisfies:

e [capacity] Foreache € E:0 < f(e) < c(e)
« [flow conservation] Foreachv € V — {s,t}: > . . fle) =D, .. f(€)

flow capacity
inflow at v = 5+ 5+0 =10
\”9 outflow atv = 10+0 =10
,;P e 0/15 *‘;ﬂ_
"-F" j\l (4]
§ 5/5 5/ 8 =

T—m;m—} '

‘f
& L
- 0/15 |:I'|

,f P

10/ 16

Maximum-flow problem (cont.)
Def. The valueof aflow fis:val(f) = >, s F(€) = 2 inte s F(€)

Max-flow problem. Find a flow of maximum value.

How capacity

inflow at v = 534540 =10
/9 outflow at v = 1+ 0 = I}

\5 0/15 I
FIS\AJ' ’
—— 5 8 —}rlﬂ;lﬂ* I
o
" b
sils
l ‘F}III

16/ 16

Ford-Fulkerson algorithm

Toward a max-flow algorithm

Greedy algorithm.
flow capacity
flow network G and flow f \\ /
) 0/4 Y
-\._F._,.l Lo K
I:?.-"
(e) 0/10 () 0/9 () n/10

 Start with f(e) = 0 foreach edge e € E.

value of flow

/

|-:.:| 0

Toward a max-flow algorithm
Greedy algorithm.

flow network G and flow f
0/4
n / \ a)
%,Lx 0/2 ,&_\WE >

_J 5) 0/10 .- 0/9 (— 0/10 * I 0

« Start with f(e) = 0 for each edge e € E.
 Find an s ~~ t path P where each edge has f(e) < c(e).

Toward a max-flow algorithm
Greedy algorithm.

flow network G and flow f
o

() 0/4
/ ﬁ
N wz\ﬂ; o 3
- E\ "Q

() 0/10 () 0/9 | 0/ 10 ey 1) O +8=8

« Start with f(e) = 0 for each edge e € E.
 Find an s ~~ t path P where each edge has f(e) < c(e).
« Augment flow along path P.

Toward a max-flow algorithm
Greedy algorithm.

flow network G and flow f

) 0/4 ()
o &
~ 2/2 & 6/6 o
HEI'L / 8 / %
(s) 6/10 () 8/ 9 () 10/10 (1) 16

 Start with f(e) = 0 foreach edge e € E.

 Find an s ~~ t path P where each edge has f(e) < c(e).
« Augment flow along path P.

» Repeat until you get stuck.

_ Ending flow value = 16

Toward a max-flow algorithm
Greedy algorithm.

flow network G and flow f

=
3/4)
O 9
\ 0/2 > 6/6 -
o £ “8 : ‘0
(s) 9/10 () 9/9 ()— 10/10

« Start with f(e) = 0 foreachedgee € E.

 Find an s ~~ t path P where each edge has f(e) < c(e).
« Augment flow along path P.

» Repeat until you get stuck.

But max-flow value = 19

EaT
I 1
&) 19

i

Why greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network .

« Max flow f* has f*(v,w) = 0.
» (areedy algorithm could choose s —+ v — w — t as first path.

s £
2

I 2

N
N : ™~

sl ” (Ej

Bottom line. Need some mechanism to “undo” a bad decision.

i

Residual network
Original edge. ¢ = (u,v) € E.

» Flow f(e); Capacity c(e).
Reverse edge. e ! = (v, u).

» “Undo” flow sent.

Residual capacity.

cle)—f(e) if eekE
cs(€) :{ f(e) if e'¢FE

original flow network G

"'“}7 6/ 17—l
W / o,

’

LRI c

residual netwark Gy

S |
N
p—

\

dpalivy

re sicual

r7 Ca PRt by
i
2

11
K\E

4

WI'
il

,;/
-+
2
i
=
A
2
-
i

i

Residual network (cont.)
Residual network. G; = (V, Ey, s, t, cy).

e E;={e: f(e) <cle)}u{e: f(e) > 0}.
« Key property: f'isaflowin G, iff f + f'isaflowin G.

Augmenting path

Def. An augmenting path is a simple s ~+ ¢ path in the residual network G ;.

Def. The bottleneck capacity of an augmenting path P is the minimum residual
capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G . Then, after
calling f' = rUGMENT(f, ¢, P), the resulting f’ is a flow and val(f') = val(f) +
= bottleneck(Gy, P).

i

Augmenting path: algorithm

Key property. Let f be a flow and let P be an augmenting path in G . Then, after
calling f' = AUGMENT(f, e, P), the resulting f' is a flow and val(f') = val(f) +
bottleneck(Gy, P).

AUGMENT(Ff, ¢, P)

1. A = bottleneck capacity of augmenting path P.
2. FOREACH edge e € P:

1.IF(e€ E) f(e) = f(e) + A;

2. ELSE f(e™') = f(e™') — A;
3. RETURN f;

i

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.

« Start with f(e) = 0 foreach edge e € E.

 Find an s ~+ t path P in the residual network G .
« Augment flow along path P.

» Repeat until you get stuck.

ORD-FULKERSON(G)

1. FOREACH edge e € E: f(e) = 0;
2. Gy = residual network of G with respect to flow f,

3. WHILE (there exists an s ~ t path P in Gy)
1. f = AUGMENT(f, ¢, P);
2. Update G;

4. RETURN f;

i

Demo: Ford-Fulkerson

Max-Flow Min-Cut Theorem

i

Flows and cuts: relationship

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the value of
the flow f equals the net flow across the cut (A, B).

val(f)= Y fle)— Y fle)

eout A e into A

net flow across cut = (10 + 10 + 5+ 10+ 0+ 0)-(5+5+0+0) = 25

— 5..-9
I } cdges from B to A

ﬁ‘

~lr

< T T—in.r|n+. 1 value of low - 25

1.}

n,f-l 0/15

N \&

i

Flows and cuts: relationship (cont.)

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the value of
the flow f equals the net flow across the cut (A, B).

val(f)= Y fle)— Y fle)

eout A e into A

Pf.

val(f) = Z JFle) = Z f(e)

eout s e mto s

=Y (D fle- Y fle)

ped eout v e into v

= > fle)— Y fle)

eout A einto A

i

Flows and cuts: duality

Weak duality. Let f be any flow and (A, B) be any cut. Then, val(f) < cap(A, B).
Pf.

val(f) = Z f(e) - Z f(e)
< Z f(e)

e out A

< Z cle)

eout A
= cap(4, B)

i

Certificate of optimality

Corollary. Let f be aflow and let (A, B) be any cut. If val(f) = cap(A, B), then f
is a max flow and (A, B) is a min cut.
Pf.

 Forany flow f": val(f') < cap(A, B) = val(f).
e Foranycut (A, B'): cap(A’, B') > val(f) = cap(A, B).

i

Max-flow min-cut theorem |

Max-flow min-cut theorem. [strong duality] Value of a max flow = capacity of a min
Cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:

« A. There exists a cut (A, B) such that cap(A, B) = val(f).
« B. f is a max flow.

« C. There is no augmenting path with respect to f.
= Or, if Ford-Fulkerson terminates, then f is max flow.

[A= B]

» Weak duality corollary.

i

Max-flow min-cut theorem |l

Max-flow min-cut theorem. [strong duality] Value of a max flow = capacity of a min
Cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:

« A. There exists a cut (A, B) such that cap(A, B) = val(f).
« B. f is a max flow.

« C. There is no augmenting path with respect to f.
[B = C] We prove contrapositive: -C = —B.

» Suppose that there is an augmenting path with respect to f.
« Can improve flow f by sending flow along this path.
« Thus, f is not a max flow, contradiction.

i

Max-flow min-cut theorem lll

[C= A]

« Let f be a flow with no augmenting paths.

* Let A = set of nodes reachable from s in residual network G .
« By definition of A: s € A.
By definition of flow f:t ¢ A.

val(f)

= > fle)— Y f(e)

eout A e into A
= Z cle) — 0

e out A
= cap(4, B)

edge ¢ = (v,

ariginal low network G

A

Computing a minimum cut

Theorem. Given any max flow f, can compute a min cut (A, B) in O(m) time.
Pf. Let A = set of nodes reachable from s in residual network G';.

« argument from previous slide implies that capacity of (A, B) = value of flow f

Capacity-scaling algorithm

Ford-Fulkerson: analysis

Assumption. Every edge capacity c(e) is an integer between 1 and C'.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual
capacity ¢ (e) is an integer.
Pf. By induction on the number of augmenting paths.

i

Ford-Fulkerson: analysis

Assumption. Every edge capacity c(e) is an integer between 1 and C'.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual
capacity ¢ (e) is an integer.
Pf. By induction on the number of augmenting paths.

Theorem. Ford-Fulkerson terminates after at most val(f*) < nC augmenting paths,
where f* is a max flow.
Pf. Each augmentation increases the value of the flow by at least 1.

Corollary. The running time of Ford-Fulkerson is O(mnC').
Pf. Can use either BFS or DFS to find an augmenting path in O(m) time.

i

Ford-Fulkerson: analysis

Assumption. Every edge capacity c(e) is an integer between 1 and C'.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual
capacity ¢ (e) is an integer.
Pf. By induction on the number of augmenting paths.

Theorem. Ford-Fulkerson terminates after at most val(f*) < nC augmenting paths,
where f* is a max flow.
Pf. Each augmentation increases the value of the flow by at least 1.

Corollary. The running time of Ford-Fulkerson is O(mnC').
Pf. Can use either BFS or DFS to find an augmenting path in O(m) time.

Integrality theorem. There exists an integral max flow f~.

Pf. Since Ford-Fulkerson terminates, theorem follows from integrality invariant (and
augmenting path theorem).

i

Ford-Fulkerson: exponential example

Q. Is generic Ford-Fulkerson algorithm poly-time in input size (m, n,log C')?
A. No. If max capacity is C, then algorithm can take > C iterations.

e See Demo.

-
TR
A
i .
100,77 |1 w100
i 1 N
;O i -
o 1 L
L i £
-\ .
b i P
", i #
Wi H F
1 . WD
Wt
(z]}
fa}
T
s W e
h}/' ¥ ""'Q.H ", U]
Iy 4 b
' F o ER
Iy -"i oA
-l'“".-"'; |_ “l-_;_;'l.__"
= |
A b
w1 R o |
Y, o [
ar i
3 LA | i
95 I':-"_l‘, A
o, B
i

..-"'-.HJ'I\'
4 __,-It-\.
S1] 1N
F £l i L0
l_,.-" i N
& # i Tu
= N] g T
' o
I____i] ' 1 -'“i |
; ' F ok
' !
100~ & ,f ;"{
nh L F
F k.
wr
|b:|
-
.-l'-: r:.{'ll'_-. -
", L
'1‘:::.-"' _,.-i 59 5*__:\.-.!
."I. r'll | K‘"\._I v Y
] 1 ll
._J'—._ # = : h“":!-'.-._
Y J'h'.':_ il I: r
AR i ___-r—"
L S I
.". ot ___.-" I.r"lll
h i r
k) "' H"'
—a,

Quiz: Ford-Fulkerson

The Ford-Fulkerson algorithm is guaranteed to terminate if the edge capacities are

A. Rational numbers.
B. Real numbers.

C. Both A and B.

D. Neither A nor B.

Quiz: Ford-Fulkerson

The Ford-Fulkerson algorithm is guaranteed to terminate if the edge capacities are

A. Rational numbers.
B. Real numbers.

C. Both A and B.

D. Neither A nor B.

Rational = integer / integer

Choosing good augmenting paths

Use care when selecting augmenting paths.

« Some choices lead to exponential algorithms.
» Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee that Ford-
Fulkerson terminates (or converges to a maximum flow)!

« See Demo.

Choosing good augmenting paths

Use care when selecting augmenting paths.

« Some choices lead to exponential algorithms.
» Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee that Ford-
Fulkerson terminates (or converges to a maximum flow)!

« See Demo.

Goal. Choose augmenting paths so that:

« Can find augmenting paths efficiently.
e Few iterations.

Choosing good augmenting paths (cont.)

Goal. Choose augmenting paths so that:

» Can find augmenting paths efficiently.
» Few iterations.

Choose augmenting paths with:

« Max bottleneck capacity (“fattest”).

= How to find?

= [Next] Sufficiently large bottleneck capacity.
» [Ahead] Fewesl edges.

i

Capacity-scaling
Overview. Choosing augmenting paths with “large” bottleneck capacity.

» Maintain scaling parameter A.

 Let G;(A) be the part of the residual network containing only those edges with
capacity > A.

« Any augmenting path in G¢(A) has bottleneck capacity > A.

e o
I % L5
x‘“-)\ Pt
/ P4 b §
o @, i “a
: Y d “,
NG N N
& —® @ o
e 9 /‘}-\...r — /}.
S "‘-.__. #
s x""n ":im {.,'-:.3
”xx ,--"; bt s
L I~
(13)

i

Capacity-scaling: algorithm
CAPACITY-SCALING(G)

1. FOREACHedge e € E: f(e) = 0;
2. A = largest power of 2 < C;
3. WHILE (A > 1)
1. G¢(A) = A-residual network of G with respect to flow f;
2. WHILE (there exists an s ~= t path P in G¢(A))
1. f = AUGMENT(f, ¢, P);
2. Update G¢(A);
3. A=4A/2;
4. RETURN f;

i

Capacity-scaling: correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter A is a power of 2.
Pf. Initially a power of 2, each phase divides A by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual
capacity cs(e) is an integer.
Pf. Same as for generic Ford-Fulkerson.

i

Capacity-scaling: correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter A is a power of 2.
Pf. Initially a power of 2, each phase divides A by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual
capacity cs(e) is an integer.
Pf. Same as for generic Ford-Fulkerson.

Theorem. If capacity-scaling algorithm terminates, then f is a max flow.
Pt

« By integrality invariant, when A = 1 = G;(A) = Gy.
» Upon termination of A = 1 phase, there are no augmenting paths.
« Result follows augmenting path theorem.

i

Capacity-scaling: analysis

Lemma 1. There are 1 + |log, C'| scaling phases.
Pf. Initially C'/2 < A < C'; A decreases by a factor of 2 in each iteration.

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then, the max-flow
value < val(f) + mA.
Pf. Next slide.

Lemma 3. There are < 2m augmentations per scaling phase.
Pf.

« Let f be the flow at the beginning of a A-scaling phase.
e Lemma 2 = max-flow value < val(f) + m(24A).
« Each augmentation in a A-phase increases val(f) by at least A.

i

Capacity-scaling: analysis (cont.)

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then, the max-flow
value < val(f) + mA.
Pf.

« We show there exists a cut (A, B) such that cap(A4, B) < val(f) + mA.
« Choose A to be the set of nodes reachable from s in G;(A).
« By definition of A: s € A; By definition of flow f.t ¢ A.

wi(f) = 2, f&~), 1l .,..,.M.nm..;';"'-f.-::};;::‘,!..:f:
e out 4 einto A
2 Y (el)-a)-) A -
eout A einto A
T ORI T S S
eout A e out A einto A

> cap(A, B)mA

i

Capacity-scaling: running time
Lemma 1. There are 1 + |log, C'| scaling phases.

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then, the max-flow
value < val(f) + mA.

Lemma 3. There are < 2m augmentations per scaling phase.

Theorem. The capacity-scaling algorithm takes O(m? log C') time.
Pf.

« Lemma 1 + Lemma 3 = O(mlogC') augmentations.
» Finding an augmenting path takes O(m) time.

Shortest augmenting paths

i

Shortest augmenting

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges (via BFS).

SHORTEST-AUGMENTING-PATH(G)

1. FOREACH e € E: f(e) = 0;
2. Gy = residual network of G with respect to flow f;
3. WHILE (there exists an s ~~ ¢ path in Gy)
1. P = BREADTH-FIRST-SEARCH(GY);
2. [= AUGMENT(f, ¢, P),
3. Update Gy;
4. RETURN f;

Shortest augmenting: analysis overview

Lemma 1. The length (number of edges) of a shortest augmenting path never
decreases.
Pf. Ahead.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest

augmenting path strictly increases.
Pf. Ahead.

Shortest augmenting: analysis overview

Lemma 1. The length (number of edges) of a shortest augmenting path never
decreases.
Pf. Ahead.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest

augmenting path strictly increases.
Pf. Ahead.

Theorem. The shortest-augmenting-path algorithm takes O(m?n) time.
Pf.

« O(m) time to find a shortest augmenting path via BFS.

* There are < mn augmentations.
« [from Lemmas] at most m augmenting paths of length &
= [simple path] at most n — 1 different lengths

i

Level graph
Def. Given a digraph G = (V, E') with source s, its level graph is defined by:

* |(v) = number of edges in shortest s ~~ v path.
« L = (V, E¢) is the subgraph of G that contains only those edges (v, w) € E
with I(w) = I(v) + 1.

graph G

lewvel graph Lo

Level graph (cont.)
Key property. P is a shortest s ~+ v path in G iff P isan s ~+ v pathin L.

» nodes are ordered the same with BFS
» “back-edges” are removed

graph G

level graph Le

Shortest augmenting: Lemma 1

Lemma 1. The length of a shortest augmenting path never decreases.

 Let f and f’ be flow before and after a shortest-path augmentation.
» Let L and Lg' be level graphs of G and G}.

» Only back edges added to G'; bottleneck broken.

« any s ~~ t path uses back edge is longer than previous length.

level graph Lg

Shortest augmenting: Lemma 2

Lemma 2. After at most m shortest-path augmentations, the length of a shortest
augmenting path strictly increases.

» Al least one (bottleneck) edge is deleted from L¢ per augmentation.
« No new edge added to L until shortest path length strictly increases.

level graph Le

Shortest augmenting: analysis

Lemma 1. The length (number of edges) of a shortest augmenting path never
decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest
augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes O(m*n) time.

i

Shortest augmenting: analysis

Lemma 1. The length (number of edges) of a shortest augmenting path never
decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest
augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes O(m*n) time.

Note. ©(mn) augmentations necessary for some flow networks.

» Try to decrease time per augmentation instead.
= Simple idea = O(mn?) [Dinitz 1970]
= Dynamic trees = O(mnlog n) [Sleator-Tarjan 1983]

Dinitz’ algorithm

Dinitz’ algorithm
Two types of augmentations.

« Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

e Construct level graph L.

« Start at s, advance along an edge in L until reach ¢ or get stuck.
= [f reach ¢, augment flow; update L;; and restart from s.
= |f get stuck, delete node from L and retreat to previous node.

-

.
A

construct level graph 20 ("
@ i

i

i

Demo: Dinitz’ algorithm

i

Dinitz’ algorithm (refined)

INITIALIZE(G, f)

1. L; = level-graph of Gy;
2. P=
3. GOTO ADVANCE(s);

RETREAT(v)

1.IF (v =) STOP;

2. ELBE
1. Delete v (and all incident

edges) from L¢;
2. Remove last edge (u,v) from P

ADVANCE(v)

1. IF (v = t) AUGMENT(P);
1. Remove saturated edges from
Lg,
2, P=
3. GOTO ADVANCE(S);
2. IF (there exists edge (v, w) € Lg)
1. Add edge (v, w) to P,
2. GOTO ADVANCE(w);
3.-ELSE
1. GOTO RETREAT(v);

Quiz: level graph

How to compute the level graph L efficiently?

A. Depth-first search.
B. Breadth-first search.
C. Both A and B.

D. Neither A nor B.

i

Dinitz’ algorithm: analysis

Lemma. A phase can be implemented to run in O(mn) time.
Pf.

» |nitialization happens once per phase. O(m) using BFS.
« At most m augmentations per phase. O(mn) per phase.
» (because an augmentation deletes at least one edge from L)
« At most n retreats per phase. O(m + n) per phase
= (because a retreat deletes one node from Lg)
« At most mn advances per phase. O(mn) per phase
= (because at most n advances before retreat or augmentation)

i

Dinitz’ algorithm: analysis

Lemma. A phase can be implemented to run in O(mn) time.
Pf.

» |nitialization happens once per phase. O(m) using BFS.
« At most m augmentations per phase. O(mn) per phase.
» (because an augmentation deletes at least one edge from L)
« At most n retreats per phase. O(m + n) per phase
= (because a retreat deletes one node from Lg)
« At most mn advances per phase. O(mn) per phase
= (because at most n advances before retreat or augmentation)

Theorem. [Dinitz 1970] Dinitz’ algorithm runs in O(mn?) time.
Pf.

« By Lemma, O(mn) time per phase.
» At most n — 1 phases (as in shortest-augmenting-path analysis).

Maximum-flow algorithms: practice

Push-relabel algorithm. [Goldberg-Tarjan 1988] Increases flow one edge at a time
instead of one augmenting path at a time.

« (SECTION 7.4, Algorithm Design.)

Maximum-flow algorithms: practice

Push-relabel algorithm. [Goldberg-Tarjan 1988] Increases flow one edge at a time
instead of one augmenting path at a time.

« (SECTION 7.4, Algorithm Design.)

Caveat. Worst-case running time is generally not useful for predicting or comparing
max-flow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: O(m?/2) in practice.

Maximum-flow algorithms: CV

Computer vision. Different algorithms work better for some dense problems that
arise in applications to computer vision.

 [Boykov and Kolmogorov 2004] An experimental comparison of min-cut/max- flow
algorithms for energy minimization in vision.

Simple unit-capacity networks

Quiz: bipartite matching

Which max-flow algorithm to use for bipartite matching?

A. Ford-Fulkerson: O(mnC').

B. Capacity scaling: O(m*logC).

C. Shortest augmenting path: O(m?n).
D. Dinitz' algorithm: O(mn?).

i

Quiz: bipartite matching

Which max-flow algorithm to use for bipartite matching?

A. Ford-Fulkerson: O(mnC').

B. Capacity scaling: O(m*logC).

C. Shortest augmenting path: O(m?n).
D. Dinitz' algorithm: O(mn?).

D. the graph may be dense.

i

Simple unit-capacity networks

Def. A flow network is a simple unit-capacity network if:

» Every edge has capacity 1.
» Every node (other than s or t) has exactly one entering edge, or exacily one
leaving edge, or both.

Ex. Bipartite matching.

W)

rd _|:.-' o
Fal¥ | \
f \
L1
|1

TN X
_
J
1 | -'lf
O . & WL,

P
/N

’

\ III'II

I
.l'l

5 Yo,
.IlI

Pl Y
I

i

Simple unit-capacity networks

Def. A flow network is a simple unit-capacity network if:

» Every edge has capacity 1.
» Every node (other than s or t) has exactly one entering edge, or exacily one
leaving edge, or both.

Ex. Bipartite matching.

Property. Let G be a simple unit-capacity network and let f be a 0-1 flow. Then,
residual network G'; is also a simple unit-capacity network.

Unit-capacity: algorithm overview
Shortest-augmenting-path algorithm.

« Normal augmentation: length of shortest path does not change.
» Special augmentation: length of shortest path strictly increases.

i

Unit-capacity: algorithm overview
Shortest-augmenting-path algorithm.

« Normal augmentation: length of shortest path does not change.
» Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm
computes a maximum flow in O(mn'/?) time.
Pf.

« Lemma 1. Each phase of normal augmentations takes O(m) time.
« Lemma 2. After n'/* phases, val(f) > val(f*) — n'/>.
« Lemma 3. After < n'/? additional augmentations, flow is optimal.

i

Unit-capacity: algorithm overview
Shortest-augmenting-path algorithm.

« Normal augmentation: length of shortest path does not change.
» Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm
computes a maximum flow in O(mn'/?) time.
Pf.

« Lemma 1. Each phase of normal augmentations takes O(m) time.
« Lemma 2. After n'/* phases, val(f) > val(f*) — n'/>.
« Lemma 3. After < n'/? additional augmentations, flow is optimal.

Lemma 3. After < n'/? additional augmentations, flow is optimal.
Pf. Each augmentation increases flow value by at least 1.

Lemma 1 and Lemma 2. Ahead.

i

Unit-capacity: Dinitz’
Phase of normal augmentations.

e Construct level graph L.

« Start at s, advance along an edge in L until reach t or get stuck.
 If reach £, augment flow; update L;; and restart from s.

« |f get stuck, delete node from L and go to previous node.

construct level graph

O (. @) 'Q.,% Q 0]
.-"'..-. =, - ""-\-\.H .-"'-. "‘_ : :‘Fl\. f i .
@ O——0———0 @ / o~ —@
i, . '\-\..-_\:_.._:- 2 s > = x-.x __-" s,
- __‘_.-' 'l.‘ = =
o——@ R -O——@ ;g:::»—-c_:r
‘H"h. = o
"y ""'-\.___ .__.-"'
@
d

level graph Le W

i

Demo: Dinitz’ for Unit-capacity

i

Unit-capacity: Lemma 1
Phase of normal augmentations.

« Construct level graph L.

« Start at s, advance along an edge in L until reach t or get stuck.
 If reach £, augment flow; update L;; and restart from s.

« |f get stuck, delete node from L and go to previous node.

Lemma 1. A phase of normal augmentations takes O(m) time.
Pf.

« O(m) to create level graph L¢.

* O(1) per edge (each edge involved in at most one advance, retreat, and
augmentation).

* O(1) per node (each node deleted at most once).

i

Quiz: non-unit-capacity

Consider running advance-retreat algorithm in a unit-capacity network (but not
necessarily a simple one). What is running time?

A.O(m).

B. O(m%?).

C. O(mn).

D. May not terminate.

Hint: both indegree and outdegree of a node can be larger than 1.

i

Quiz: non-unit-capacity

Consider running advance-retreat algorithm in a unit-capacity network (but not
necessarily a simple one). What is running time?

A.O(m).

B. O(m%?).

C. O(mn).

D. May not terminate.

Hint: both indegree and outdegree of a node can be larger than 1.

A. may take m operations per node

i

Unit-capacity: Lemma 2
Lemma 2. After n'/? phases, val(f) > val(f*) — n'/?.

« After n'/? phases, length of shortest augmenting path is > n'/2.
« Thus, level graph has > n'/? levels (not including levels for s or t).
« Let 1 < h < n'/? be a level with min number of nodes = |V},| < n'/2.

level graph Lg for flow f

Q. Q -8 O 20
j:l z = 2 = H, p-, N
e S # 5 o F i .y
r o ™ & b oy - ”
Sy . o b " il e - .
@ @ 30———0 @/ & -0 =)
- ’ e P e !
B8 e - f_.__f - B ;
o o - i
b .____-' H"\-\. _,.|" - i . ¥ - s :
O @ O Q 0 o—Oo
S - L
i Y
x“\.H"H .-""'. -"'.-.
My i - J
b Sy - P

O
v, Vi, ‘O V. in

i

Unit-capacity: Lemma 2 (cont.)
Lemma 2. After n'/? phases, val(f) > val(f*) — n'/?.
« After n'/? phases, length of shortest augmenting path is > n'/2.
« Thus, level graph has > n!/? levels (not including levels for s or t).
« Let 1 < h < n'/? be a level with min number of nodes = |V},| < n'/2.

eletA={v:Il(v) < h}U{v:I(v) = hand v has < 1 outgoing residual edge}.
e caps(A, B) < |Vi| < nV/? = wal(f) > val(f*) — n'/2.

residual netwaork Ge

o o ru'b_dunl edges
O .
o R A A ===
~e /

i

Unit-capacity: analysis

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm
computes a maximum flow in O(mn'/?) time.
Pf.

« Lemma 1. Each phase of normal augmentations takes O(m) time.
« Lemma 2. After n'/? phases, val(f) > val(f*) — n'/=.

« Lemma 3. After < n'/? additional augmentations, flow is optimal.

i

Unit-capacity: analysis

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm
computes a maximum flow in O(mn'/?) time.
Pf.

« Lemma 1. Each phase of normal augmentations takes O(m) time.
« Lemma 2. After n'/* phases, val(f) > val(f*) — n'/=.

« Lemma 3. After < n'/? additional augmentations, flow is optimal.

Corollary. Dinitz" algorithm computes max-cardinality bipartite matching in
O(mn'/?) time.

