Algorithm II

7. Network Flow I

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Flow and Cut

Flow and Cut - supply

Max-flow and min-cut problems

Flow network

A flow network is a tuple G = (V, E, s, t, c).

- Digraph (V, E) with source $s \in V$ and sink $t \in V$.
- Capacity $c(e) \ge 0$ for each $e \in E$.

Intuition. Material flowing through a transportation network; material originates at source and is sent to sink.

Minimum-cut problem

Def. An **st-cut (cut)** is a partition (A, B) of the nodes with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from A to B.

•
$$cap(A, B) = \sum_{e \text{ out } A} c(e)$$

Min-cut problem. Find a cut of minimum capacity.

Maximum-flow problem

Def. An **st-flow** (flow) f is a function that satisfies:

- [capacity] For each $e \in E$: $0 \le f(e) \le c(e)$
- [flow conservation] For each $v \in V \{s,t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out } v} f(e)$

Maximum-flow problem (cont.)

Def. The **value** of a flow f is: $val(f) = \sum_{e \text{ out } s} f(e) - \sum_{e \text{ into } s} f(e)$

Max-flow problem. Find a flow of maximum value.

Ford-Fulkerson algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge $e \in E$.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightsquigarrow t$ path P where each edge has f(e) < c(e).

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightsquigarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightsquigarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightsquigarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Why greedy algorithm fails

- Q. Why does the greedy algorithm fail?
- A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.

- Max flow f^* has $f^*(v, w) = 0$.
- ullet Greedy algorithm could choose s o v o w o t as first path.

Bottom line. Need some mechanism to "undo" a bad decision.

Residual network

Original edge. $e = (u, v) \in E$.

• Flow f(e); Capacity c(e).

Reverse edge. $e^{-1} = (v, u)$.

"Undo" flow sent.

Residual capacity.

$$c_f(e) = \left\{ egin{array}{ll} c(e) - f(e) & ext{if} & e \in E \ f(e) & ext{if} & e^{-1}
otin E \end{array}
ight.$$

Residual network (cont.)

Residual network. $G_f = (V, E_f, s, t, c_f)$.

- $E_f = \{e : f(e) < c(e)\} \cup \{e^{-1} : f(e) > 0\}.$
- Key property: f' is a flow in G_f iff f + f' is a flow in G.

Augmenting path

Def. An augmenting path is a simple $s \rightsquigarrow t$ path in the residual network G_f .

Def. The **bottleneck capacity** of an augmenting path P is the *minimum residual* capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G_f . Then, after calling f' = AUGMENT(f, c, P), the resulting f' is a flow and $val(f') = val(f) + bottleneck(G_f, P)$.

Augmenting path: algorithm

Key property. Let f be a flow and let P be an augmenting path in G_f . Then, after calling f' = AUGMENT(f, c, P), the resulting f' is a flow and $val(f') = val(f) + bottleneck(G_f, P)$.

AUGMENT(f,c,P)

- 1. Δ = bottleneck capacity of augmenting path P.
- 2. FOREACH edge $e \in P$:
 - 1. IF $(e \in E) f(e) = f(e) + \Delta$;
 - 2. ELSE $f(e^{-1}) = f(e^{-1}) \Delta$;
- 3. RETURN f;

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- ullet Find an $s \leadsto t$ path P in the residual network G_f .
- Augment flow along path P.
- Repeat until you get stuck.

FORD-FULKERSON(G)

- 1. FOREACH edge $e \in E$: f(e) = 0;
- 2. G_f = residual network of G with respect to flow f;
- 3. WHILE (there exists an $s \rightsquigarrow t$ path P in G_f)
 - 1. f = AUGMENT(f, c, P);
 - 2. Update G_f ;
- 4. RETURN f;

Demo: Ford-Fulkerson

Max-Flow Min-Cut Theorem

Flows and cuts: relationship

Flow value lemma. Let f be any flow and let (A,B) be any cut. Then, the value of the flow f equals the net flow across the cut (A,B).

$$val(f) = \sum_{e ext{ out } A} f(e) - \sum_{e ext{ into } A} f(e)$$

Flows and cuts: relationship (cont.)

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the value of the flow f equals the net flow across the cut (A, B).

$$val(f) = \sum_{e ext{ out } A} f(e) - \sum_{e ext{ into } A} f(e)$$

Pf.

$$egin{aligned} val(f) &= \sum_{e ext{ out } s} f(e) - \sum_{e ext{ into } s} f(e) \ &= \sum_{v \in A} (\sum_{e ext{ out } v} f(e) - \sum_{e ext{ into } v} f(e)) \ &= \sum_{e ext{ out } A} f(e) - \sum_{e ext{ into } A} f(e) \end{aligned}$$

Flows and cuts: duality

Weak duality. Let f be any flow and (A,B) be any cut. Then, $val(f) \leq cap(A,B)$. **Pf**.

$$egin{aligned} val(f) &= \sum_{e ext{ out } A} f(e) - \sum_{e ext{ into } A} f(e) \ &\leq \sum_{e ext{ out } A} f(e) \ &\leq \sum_{e ext{ out } A} c(e) \ &= cap(A,B) \end{aligned}$$

Certificate of optimality

Corollary. Let f be a flow and let (A,B) be any cut. If val(f) = cap(A,B), then f is a max flow and (A,B) is a min cut. **Pf**.

- For any flow f': $val(f') \leq cap(A, B) = val(f)$.
- For any cut (A', B'): $cap(A', B') \ge val(f) = cap(A, B)$.

Max-flow min-cut theorem I

Max-flow min-cut theorem. [strong duality] Value of a max flow = capacity of a min cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:

- A. There exists a cut (A, B) such that cap(A, B) = val(f).
- B. f is a max flow.
- C. There is no augmenting path with respect to f.
 - Or, if Ford-Fulkerson terminates, then f is max flow.

$$[A \Rightarrow B]$$

Weak duality corollary.

Max-flow min-cut theorem II

Max-flow min-cut theorem. [strong duality] Value of a max flow = capacity of a min cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:

- A. There exists a cut (A, B) such that cap(A, B) = val(f).
- B. f is a max flow.
- C. There is no augmenting path with respect to f.

[$B \Rightarrow C$] We prove contrapositive: $\neg C \Rightarrow \neg B$.

- Suppose that there is an augmenting path with respect to f.
- Can improve flow f by sending flow along this path.
- Thus, f is not a max flow, contradiction.

Max-flow min-cut theorem III

$$[C \Rightarrow A]$$

- Let f be a flow with no augmenting paths.
- Let A = set of nodes reachable from s in residual network G_f .
- By definition of A: $s \in A$.
- By definition of flow $f: t \notin A$.

$$egin{aligned} val(f) &= \sum_{e ext{ out } A} f(e) - \sum_{e ext{ into } A} f(e) \ &= \sum_{e ext{ out } A} c(e) - 0 \ &= cap(A,B) \end{aligned}$$

Computing a minimum cut

Theorem. Given any max flow f, can compute a min cut (A, B) in O(m) time. **Pf**. Let A = set of nodes reachable from s in residual network G_f .

ullet argument from previous slide implies that capacity of (A,B) = value of flow f

Capacity-scaling algorithm

Ford-Fulkerson: analysis

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Pf. By induction on the number of augmenting paths.

Ford-Fulkerson: analysis

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Pf. By induction on the number of augmenting paths.

Theorem. Ford-Fulkerson terminates after at most $val(f^*) \leq nC$ augmenting paths, where f^* is a max flow.

Pf. Each augmentation increases the value of the flow by at least 1.

Corollary. The running time of Ford-Fulkerson is O(mnC).

Pf. Can use either BFS or DFS to find an augmenting path in O(m) time.

Ford-Fulkerson: analysis

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Pf. By induction on the number of augmenting paths.

Theorem. Ford-Fulkerson terminates after at most $val(f^*) \leq nC$ augmenting paths, where f^* is a max flow.

Pf. Each augmentation increases the value of the flow by at least 1.

Corollary. The running time of Ford-Fulkerson is O(mnC).

Pf. Can use either BFS or DFS to find an augmenting path in O(m) time.

Integrality theorem. There exists an integral max flow f^* .

Pf. Since Ford-Fulkerson terminates, theorem follows from integrality invariant (and augmenting path theorem).

Ford-Fulkerson: exponential example

Q. Is generic Ford-Fulkerson algorithm poly-time in input size $(m, n, \log C)$?

A. No. If max capacity is C, then algorithm can take $\geq C$ iterations.

Quiz: Ford-Fulkerson

The Ford-Fulkerson algorithm is guaranteed to terminate if the edge capacities are ...

- A. Rational numbers.
- B. Real numbers.
- C. Both A and B.
- D. Neither A nor B.

Quiz: Ford-Fulkerson

The Ford-Fulkerson algorithm is guaranteed to terminate if the edge capacities are ...

- A. Rational numbers.
- B. Real numbers.
- C. Both A and B.
- D. Neither A nor B.

Rational = integer / integer

Choosing good augmenting paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee that Ford-Fulkerson terminates (or converges to a maximum flow)!

See Demo.

Choosing good augmenting paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee that Ford-Fulkerson terminates (or converges to a maximum flow)!

See Demo.

Goal. Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- · Few iterations.

Choosing good augmenting paths (cont.)

Goal. Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with:

- Max bottleneck capacity ("fattest").
 - How to find?
 - [Next] Sufficiently large bottleneck capacity.
- [Ahead] Fewest edges.

Capacity-scaling

Overview. Choosing augmenting paths with "large" bottleneck capacity.

- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the part of the residual network containing only those edges with capacity $\geq \Delta$.
- Any augmenting path in $G_f(\Delta)$ has bottleneck capacity $\geq \Delta$.

Capacity-scaling: algorithm

CAPACITY-SCALING(G)

- 1. FOREACH edge $e \in E$: f(e) = 0;
- 2. Δ = largest power of $2 \le C$;
- 3. WHILE ($\Delta \geq 1$)
 - 1. $G_f(\Delta) = \Delta$ -residual network of G with respect to flow f;
 - 2. WHILE (there exists an $s \rightsquigarrow t$ path P in $G_f(\Delta)$)
 - 1. f = AUGMENT(f, c, P);
 - 2. Update $G_f(\Delta)$;
 - 3. $\Delta = \Delta/2$;
- 4. RETURN f;

Capacity-scaling: correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Pf. Initially a power of 2; each phase divides Δ by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Pf. Same as for generic Ford-Fulkerson.

Capacity-scaling: correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Pf. Initially a power of 2; each phase divides Δ by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Pf. Same as for generic Ford-Fulkerson.

Theorem. If capacity-scaling algorithm terminates, then f is a max flow. **Pf**.

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- ullet Upon termination of $\Delta=1$ phase, there are no augmenting paths.
- Result follows augmenting path theorem.

Capacity-scaling: analysis

Lemma 1. There are $1 + |\log_2 C|$ scaling phases.

Pf. Initially $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration.

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the max-flow value $\leq val(f) + m\Delta$.

Pf. Next slide.

Lemma 3. There are $\leq 2m$ augmentations per scaling phase. **Pf**.

- Let f be the flow at the beginning of a Δ -scaling phase.
- Lemma 2 \Rightarrow max-flow value $\leq val(f) + m(2\Delta)$.
- Each augmentation in a Δ -phase increases val(f) by at least Δ .

Capacity-scaling: analysis (cont.)

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the max-flow value $\leq val(f) + m\Delta$. **Pf**.

- We show there exists a cut (A,B) such that $cap(A,B) \leq val(f) + m\Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of A: $s \in A$; By definition of flow f: $t \notin A$.

$$egin{aligned} val(f) &= \sum_{e ext{ out } A} f(e) - \sum_{e ext{ into } A} f(e) \ &\geq \sum_{e ext{ out } A} (c(e) - \Delta) - \sum_{e ext{ into } A} \Delta \ &\geq \sum_{e ext{ out } A} c(e) - \sum_{e ext{ out } A} \Delta - \sum_{e ext{ into } A} \Delta \ &\geq cap(A,B) m \Delta \end{aligned}$$

Capacity-scaling: running time

Lemma 1. There are $1 + \lfloor \log_2 C \rfloor$ scaling phases.

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the max-flow value $\leq val(f) + m\Delta$.

Lemma 3. There are $\leq 2m$ augmentations per scaling phase.

Theorem. The capacity-scaling algorithm takes $O(m^2 \log C)$ time. **Pf**.

- Lemma 1 + Lemma 3 $\Rightarrow O(mlogC)$ augmentations.
- Finding an augmenting path takes O(m) time.

Shortest augmenting paths

Shortest augmenting

- Q. How to choose next augmenting path in Ford-Fulkerson?
- A. Pick one that uses the fewest edges (via BFS).

```
SHORTEST-AUGMENTING-PATH(G)
```

- 1. FOREACH $e \in E$: f(e) = 0;
- 2. G_f = residual network of G with respect to flow f;
- 3. WHILE (there exists an $s \rightsquigarrow t$ path in G_f)
 - 1. $P = BREADTH-FIRST-SEARCH(G_f);$
 - 2. f = AUGMENT(f, c, P);
 - 3. Update G_f ;
- 4. RETURN f;

Shortest augmenting: analysis overview

Lemma 1. The length (number of edges) of a shortest augmenting path never decreases.

Pf. Ahead.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Pf. Ahead.

Shortest augmenting: analysis overview

Lemma 1. The length (number of edges) of a shortest augmenting path never decreases.

Pf. Ahead.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Pf. Ahead.

Theorem. The shortest-augmenting-path algorithm takes $O(m^2n)$ time. **Pf**.

- O(m) time to find a shortest augmenting path via BFS.
- There are $\leq mn$ augmentations.
 - [from Lemmas] at most m augmenting paths of length k
 - [simple path] at most n-1 different lengths

Level graph

Def. Given a digraph G = (V, E) with source s, its **level graph** is defined by:

- I(v) = number of edges in shortest $s \leadsto v$ path.
- $L_G = (V, E_G)$ is the subgraph of G that contains only those edges $(v, w) \in E$ with l(w) = l(v) + 1.

Level graph (cont.)

Key property. P is a shortest $s \rightsquigarrow v$ path in G iff P is an $s \rightsquigarrow v$ path in L_G .

- nodes are ordered the same with BFS
- "back-edges" are removed

Shortest augmenting: Lemma 1

Lemma 1. The length of a shortest augmenting path never decreases.

- Let f and f' be flow before and after a shortest-path augmentation.
- Let L_G and $L_{G'}$ be level graphs of G_f and G'_f .
- Only back edges added to G_f' ; bottleneck broken.
- any $s \leadsto t$ path uses back edge is longer than previous length.

Shortest augmenting: Lemma 2

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

- At least one (bottleneck) edge is deleted from L_G per augmentation.
- ullet No new edge added to L_G until shortest path length strictly increases.

Shortest augmenting: analysis

Lemma 1. The length (number of edges) of a shortest augmenting path never decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes $O(m^2n)$ time.

Shortest augmenting: analysis

Lemma 1. The length (number of edges) of a shortest augmenting path never decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes $O(m^2n)$ time.

Note. $\Theta(mn)$ augmentations necessary for some flow networks.

- Try to decrease time per augmentation instead.
 - Simple idea $\Rightarrow O(mn^2)$ [Dinitz 1970]
 - Dynamic trees $\Rightarrow O(mn \log n)$ [Sleator-Tarjan 1983]

Dinitz' algorithm

Dinitz' algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
 - If reach t, augment flow; update L_G ; and restart from s.
 - If get stuck, delete node from L_G and retreat to previous node.

Demo: Dinitz' algorithm

Dinitz' algorithm (refined)

```
INITIALIZE(G, f)
 1. L_G = level-graph of G_f;
 2. P = \emptyset;
 3. GOTO ADVANCE(s);
RETREAT(v)
 1. IF (v = s) STOP;
 2. ELSE

    Delete v (and all incident

      edges) from L_G;
   2. Remove last edge (u, v) from P
   3. GOTO ADVANCE(u);
```

```
ADVANCE(v)
```

```
1. IF (v = t) AUGMENT(P);

    Remove saturated edges from

    L_G;
  2. P = \emptyset;
  3. GOTO ADVANCE(s);
2. IF (there exists edge (v,w) \in L_G)
  1. Add edge (v, w) to P;
  2. GOTO ADVANCE(w);
3. ELSE
  1. GOTO RETREAT(v);
```

Quiz: level graph

How to compute the level graph L_G efficiently?

- A. Depth-first search.
- **B**. Breadth-first search.
- C. Both A and B.
- D. Neither A nor B.

Dinitz' algorithm: analysis

Lemma. A phase can be implemented to run in O(mn) time. **Pf**.

- Initialization happens once per phase. O(m) using BFS.
- At most m augmentations per phase. O(mn) per phase.
 - (because an augmentation deletes at least one edge from L_G)
- At most n retreats per phase. O(m+n) per phase
 - (because a retreat deletes one node from L_G)
- At most mn advances per phase. O(mn) per phase
 - (because at most n advances before retreat or augmentation)

Dinitz' algorithm: analysis

Lemma. A phase can be implemented to run in O(mn) time. **Pf**.

- Initialization happens once per phase. O(m) using BFS.
- At most m augmentations per phase. O(mn) per phase.
 - (because an augmentation deletes at least one edge from L_G)
- At most n retreats per phase. O(m+n) per phase
 - (because a retreat deletes one node from L_G)
- At most mn advances per phase. O(mn) per phase
 - (because at most n advances before retreat or augmentation)

Theorem. [Dinitz 1970] Dinitz' algorithm runs in $O(mn^2)$ time. **Pf**.

- By Lemma, O(mn) time per phase.
- At most n-1 phases (as in shortest-augmenting-path analysis).

Maximum-flow algorithms: practice

Push-relabel algorithm. [Goldberg-Tarjan 1988] Increases flow one edge at a time instead of one augmenting path at a time.

• (SECTION 7.4, Algorithm Design.)

Maximum-flow algorithms: practice

Push-relabel algorithm. [Goldberg-Tarjan 1988] Increases flow one edge at a time instead of one augmenting path at a time.

(SECTION 7.4, Algorithm Design.)

Caveat. Worst-case running time is generally not useful for predicting or comparing max-flow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: $O(m^{3/2})$ in practice.

Maximum-flow algorithms: CV

Computer vision. Different algorithms work better for some dense problems that arise in applications to computer vision.

 [Boykov and Kolmogorov 2004] An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision.

Simple unit-capacity networks

Quiz: bipartite matching

Which max-flow algorithm to use for bipartite matching?

- **A**. Ford-Fulkerson: O(mnC).
- **B**. Capacity scaling: $O(m^2 log C)$.
- **C**. Shortest augmenting path: $O(m^2n)$.
- **D**. Dinitz' algorithm: $O(mn^2)$.

Quiz: bipartite matching

Which max-flow algorithm to use for bipartite matching?

- **A**. Ford-Fulkerson: O(mnC).
- **B**. Capacity scaling: $O(m^2 log C)$.
- **C**. Shortest augmenting path: $O(m^2n)$.
- **D**. Dinitz' algorithm: $O(mn^2)$.

D. the graph may be dense.

Simple unit-capacity networks

Def. A flow network is a simple unit-capacity network if:

- Every edge has capacity 1.
- Every node (other than s or t) has exactly one entering edge, or exactly one leaving edge, or both.

Ex. Bipartite matching.

Simple unit-capacity networks

Def. A flow network is a simple unit-capacity network if:

- Every edge has capacity 1.
- Every node (other than s or t) has exactly one entering edge, or exactly one leaving edge, or both.

Ex. Bipartite matching.

Property. Let G be a simple unit-capacity network and let f be a 0-1 flow. Then, residual network G_f is also a simple unit-capacity network.

Unit-capacity: algorithm overview

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Unit-capacity: algorithm overview

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O(mn^{1/2})$ time. **Pf**.

- Lemma 1. Each phase of normal augmentations takes O(m) time.
- Lemma 2. After $n^{1/2}$ phases, $val(f) \geq val(f^*) n^{1/2}$.
- Lemma 3. After $\leq n^{1/2}$ additional augmentations, flow is optimal.

Unit-capacity: algorithm overview

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O(mn^{1/2})$ time. **Pf**.

- Lemma 1. Each phase of normal augmentations takes O(m) time.
- Lemma 2. After $n^{1/2}$ phases, $val(f) \geq val(f^*) n^{1/2}$.
- Lemma 3. After $\leq n^{1/2}$ additional augmentations, flow is optimal.

Lemma 3. After $\leq n^{1/2}$ additional augmentations, flow is optimal.

Pf. Each augmentation increases flow value by at least 1.

Lemma 1 and Lemma 2. Ahead.

Unit-capacity: Dinitz'

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

Demo: Dinitz' for Unit-capacity

Unit-capacity: Lemma 1

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

Lemma 1. A phase of normal augmentations takes O(m) time. **Pf**.

- O(m) to create level graph L_G .
- O(1) per edge (each edge involved in at most one advance, retreat, and augmentation).
- O(1) per node (each node deleted at most once).

Quiz: non-unit-capacity

Consider running advance-retreat algorithm in a unit-capacity network (but not necessarily a simple one). What is running time?

- A. O(m).
- **B**. $O(m^{3/2})$.
- C. O(mn).
- D. May not terminate.

Hint: both indegree and outdegree of a node can be larger than 1.

Quiz: non-unit-capacity

Consider running advance-retreat algorithm in a unit-capacity network (but not necessarily a simple one). What is running time?

- A. O(m).
- **B**. $O(m^{3/2})$.
- $\mathbf{C}.\ O(mn).$
- D. May not terminate.

Hint: both indegree and outdegree of a node can be larger than 1.

A. may take m operations per node

Unit-capacity: Lemma 2

Lemma 2. After $n^{1/2}$ phases, $val(f) \geq val(f^*) - n^{1/2}$.

- After $n^{1/2}$ phases, length of shortest augmenting path is $> n^{1/2}$.
- Thus, level graph has $\geq n^{1/2}$ levels (not including levels for s or t).
- Let $1 \le h \le n^{1/2}$ be a level with min number of nodes $\Rightarrow |V_h| \le n^{1/2}$.

Unit-capacity: Lemma 2 (cont.)

Lemma 2. After $n^{1/2}$ phases, $val(f) \geq val(f^*) - n^{1/2}$.

- After $n^{1/2}$ phases, length of shortest augmenting path is $> n^{1/2}$.
- Thus, level graph has $\geq n^{1/2}$ levels (not including levels for s or t).
- Let $1 \le h \le n^{1/2}$ be a level with min number of nodes $\Rightarrow |V_h| \le n^{1/2}$.
- Let $A = \{v : l(v) < h\} \cup \{v : l(v) = h \text{ and } v \text{ has } \leq 1 \text{ outgoing residual edge} \}.$
- $ullet cap_f(A,B) \leq |V_h| \leq n^{1/2} \Rightarrow val(f) \geq val(f^*) n^{1/2}.$

Unit-capacity: analysis

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O(mn^{1/2})$ time. **Pf**.

- Lemma 1. Each phase of normal augmentations takes O(m) time.
- Lemma 2. After $n^{1/2}$ phases, $val(f) \geq val(f^*) n^{1/2}$.
- Lemma 3. After $\leq n^{1/2}$ additional augmentations, flow is optimal.

Unit-capacity: analysis

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O(mn^{1/2})$ time. **Pf**.

- Lemma 1. Each phase of normal augmentations takes O(m) time.
- Lemma 2. After $n^{1/2}$ phases, $val(f) \geq val(f^*) n^{1/2}$.
- Lemma 3. After $\leq n^{1/2}$ additional augmentations, flow is optimal.

Corollary. Dinitz' algorithm computes max-cardinality bipartite matching in $O(mn^{1/2})$ time.

