Algorithm Il

6. Dynamic Programming i

WU Xiaokun 2885

xkun.wu [at] gmail

i

Sequence alignment

i

String similarity
Q. How similar are two strings?

EX. ocurrance and occurrence.

0

0

| 53 D

o

i

Edit distance

Edit distance. [Levenshiein 1966, Needleman—-Wunsch 1970]

« Gap penalty ; mismatch penalty o, .
« Cost = sum of gap and mismatch penalties.

C T - GACCTAZCASG
CTGGACGAAZCASG

- - =

e COSt =0 + acg + ara.

Applications. Bioinformatics, spell correction, machine translation, speech
recognition, information extraction, etc.

i

Sequence alignment: cost

Goal. Given two strings z,xs...xz,, and y1y»...y,, find a min-cost alignment.

Def. An alignment M is a set of ordered pairs z;—y; such that each character
appears in at most one pair and no crossings.

e 2;—y; and zy—y; crossifi < 7', but j > j'.
Def. The cost of an alignment M is:

. ﬂﬂﬁt(ﬂf} — Z[;ﬁ;,y_i.}-’i."d Xy, U + E;‘:x. unmatched 0+ Zj:yl;u.ﬂmm'ﬂhi‘tf 0

i

Sequence alignment: problem structure
Def. OPT'(i, 7) = min cost of aligning prefix strings z,z;...z; and y1ys...y;.
Goal. OPT'(m,n).
Case 1. OPTI(i, j) matches z;—y;.

» Pay mismaltch for z;—y; + min cost of aligning ; «5...z; ; and y,ys...y; 1.
Case 2a. OPT (i, j) leaves z; unmatched.

« Pay gap for z; + min cost of alighing z,z,...z; ; and y,ys...y;.

Case 2b. OPT'(i, 7) leaves y; unmatched.

« Pay gap for y; + min cost of aligning z1z»...z; and yi1y2...yi 1.

Sequence alignment: Bellman equation

Def. OPT'(i, 7) = min cost of aligning prefix strings z,z;...z; and y1ys...y;.
Goal. OPT'(m,n).

Case 1. OPTI(i, j) matches z;—y;.

Case 2a. OPT'(i,j) leaves x; unmatched.

Case 2b. OPT (i, j) leaves y; unmatched.

Bellman equation.

jo

OPT(i,§) = { i
min{a,, , + OPT(i — 1,j — 1),6 + OPT(i — 1,3),6 + OPT (i, j — 1)}

i

Sequence alignment: Algorithm

SEQUENCE-ALIGNMENT(M, 1y L1y« v o s s Yl v o s Yny 0, &)

1. FOR 7 = 0..m: M[i,0] = i4;
2. FOR j = 0..n: M [0, j] = jé;
3. FORi$=1.m:
1.FOR j = l..n:
1. M[i, j] = min{azy; + M[i-1,5-1],6 + M[i-1,5],8 + M[i,j-1]};
4. RETURN M[m,n];

i

Sequence alignment: trace-back

EXx. Maltching mean and name, with:

¢ d =2
« mismatch vowels or consonants cost 1.
« matching vowel and consonant cost 3.

n|l 81 6|5 | 4-=6 m e
4

sl 6151315 |5 N =
—1 x

sl 4 37| 234’ | 4
- 1 2

ml 2 1l —»3 4 —»6

— ﬁ—+3—+4—+{;—+5

n (1] m

Sequence alignment: analysis

Theorem. The DP algorithm computes the edit distance (and an optimal alignment)
of two strings of lengths m and n in ©(mn) time and space.
Pf.

Correctness.

« Algorithm computes edit distance.
» Can trace back to extract optimal alignment itself.

Time. M has mn entries.

Hirschberg’s algorithm

Sequence alignment in linear space

Theorem. [Hirschberg] There exists an algorithm to find an optimal alignment in
O(mn) time and O(m + n) space.

« Clever combination of divide-and-conquer and dynamic programming.

Hirschberg’s algorithm 1

Edit distance graph.

 Let f(i,7) denote length of shortest path from (0, 0) to (7, 7).
e« Lemma: f(i,j) = OPT'(1,7) forall : and j.

E ¥ ¥z Fa ¥ ¥s
r
| @ g \
\
T 3
B

i

Hirschberg’s algorithm 1.1

Edit distance graph.

 Let f(i,7) denote length of shortest path from (0, 0) to (7, 7).
« Lemma: f(i,j) = OPT (1,) for all < and j.

Pf of Lemma. [by strong induction on i + j |

» Base case: f(0,0) = OPT(0,0) = 0.

« Inductive hypothesis: assume true for all (#', 5') with " + j" < i + j.

« Last edge on shortest path to (¢, 5) is from (i-1, j-1), (i-1, 7), or (i, j-1).
» Thus,

7(2,3)= Illlin{n‘:lz:,.l__yJ +fEi-1,7—-1),6+ f(i—1,7),6 + f(i,7 — 1)}
= miﬂ{ﬂmnm +OPr(i—1,j—-1),60+OPT'(i—1,j),6 + OPT(i,j — 1)}
=0FT1i.)

i

Hirschberg’s algorithm 1.2

Edit distance graph.

e Let f(i,7) denote length of shortest path from (0, 0) to (7, 7).
« Lemma: f(i,j) = OPT (1,) forall i and j.

« Can compute f(-, 7) for any 7 in O(mn) time and O(m + n) space.

F)

£ L ¥3 ¥a Fs ¥g

LN

—

Hirschberg’s algorithm 2

Edit distance graph.
» Let g(7, j) denote length of shortest path from (i, j) to (m, n).

¥

N

‘®

\

Hirschberg’s algorithm 2.1

Edit distance graph.

» Let g(7, j) denote length of shortest path from (i, j) to (m, n).
« Can compute g(i, j) by reversing the edge orientations and inverting the roles of
(0,0) and (m,n).

i

Hirschberg’s algorithm 2.2

Edit distance graph.

« Let g(¢, j) denote length of shortest path from (i, j) to (m,n).
« Can compute g(-, 7) for any j in O(mn) time and O(m + n) space.

!

r
‘@

|

3

i

Hirschberg’s algorithm 3

Observation 1. The length of a shortest path that uses (4, 7) is f(i,7) + g(z, 7).

Observation 2. let g be an index that minimizes f(q,n/2) + g(g,n/2). Then, there
exists a shortest path from (0, 0) to (m,n) that uses (¢, n/2).

1]

Hirschberg’s algorithm 4

Divide. Find index ¢ that minimizes f(q,n/2) + g(q,n/2); save node i—j as part of
solution.

Congquer. Recursively compute optimal alignment in each piece.

mild

Hirschberg’'s: space analysis

Theorem. Hirschberg’s algorithm uses ©(m + n) space.
Pf.

« Each recursive call uses ©(m) space to compute f(-,n/2) and g(-,n/2).
« Only ©(1) space needs to be maintained per recursive call.
« Number of recursive calls < n.

i

Hirschberg’s: time analysis warmup

Theorem. Let T'(m,n) = max running time of Hirschberg's algorithm on strings of
lengths at most m and n. Then, T'(m,n) = O(mnlogn).
Pf.

» T'(m,n) is monotone non-decreasing in both m and n.
e« T(m,n) < 2T(m,n/2) + O(mn)
= = T(m,n) = O(mnlogn).

Remark. Analysis is not tight because two sub-problems are of size (¢, n/2) and
(m—q,n/2). Next, we prove T'(m,n) = O(mn).

i

Hirschberg’s: time analysis

Theorem. Let T'(m,n) = max running time of Hirschberg's algorithm on strings of
lengths at most m and n. Then, T'(m,n) = O(mn).
Pf. | by strong inductionon m + n |

e O(mn) time to compute f(-,n/2) and g(-,n/2) and find index q.
e« T(g,n/2) + T(m—q,n/2) time for two recursive calls.
« For some constant c:

T(m,n) <emn+T(q,n/2)+T(m —q,n/2)
T(m,2) <cm

T(2,n) <cn

Claim. T'(m,n) < 2emn.

i

Hirschberg’s: time analysis (cont.)

T(m,n) <emn+T(qg,n/2)+T(m —q,n/2)
T(m,2) <em
T(2,m) <cn

Claim. T'(m,n) < 2emn.
Pf. [by strong induction on m + n |

e Base cases:m = 2and n = 2.

T(m,n) <T(q,n/2)+ T(m-q,n/2) + ecmn
< 2eqn/2 + 2¢(m—q)n/2 + emn
= ¢gn + emn—cgn + cmn

— 2emn

Longest Common Subsequence

Problem. Given two strings z,z2...2,, and y,y2...y,, find @a common subsequence
that is as long as possible.

Alternative viewpoint. Delete some characters from z; delete some character from
y, @ common subsequence if it results in the same string.

EX. LCS(GGCACCACG, ACGGCGGATACG) = GGCAACG.

Applications. Unix diff, git, bioinformatics.

i

Longest Common Subsequence: DP
Def. OPT'(i, j) = length of LCS of prefix strings = z»...z; and y1y2...y;.

Goal. OPT'(m,n).
Casel.z; = y;.

« 1 +length of LCS of z;xs...z; ; and y;92...y;1.
Case2.z; # y;.

 Delete z;: length of LCS of z;zs...x;—; and yyy2...y;.
 Delete y;: length of LCS of zxs...z; and y1y2...y5 1.

Bellman equation.

0 ifi=00rj3=0
OFT(i,7) = 1+O0OPT(i— 1,7 —1) if z; = y;
max{OPT(i —1,35),0PT(i,5 — 1)} ifx; #y;

Longest Common Subsequence: DP Il
Solution 2. Reduce to finding a min-cost alignment of z and y with

e Gap penalty § = 1
» Mismatch penalty o
o= p=10
= = 00,ifp # ¢
» Edit distance = # gaps = number of characters deleted from x and y.
e Length of LCS = (m + n - edit distance) / 2.

Analysis. O(mn) time and O(m + n) space.

Bellman—-Ford—Moore algorithm

Shortest paths with negative weights

Shortest-path problem. Given a digraph G = (V, E), with arbitrary edge lengths
[, find shortest path from source node s to destination node t.

F iz, F
| b -4
,-"JHT"I‘\.H S
] I M,
R 4

i W 12

[[=

& L ’:j-._.__. *

Greedy attempt

Dijkstra. May not produce shortest paths when edge lengths are negative.
@—: —><|>
(- 4*

Greedy attempt

Dijkstra. May not produce shortest paths when edge lengths are negative.
@—: —><|>
(- 4*

Re-weighting. Adding a constant to every edge length does not necessarily make
Dijkstra’s algorithm produce shortest paths.

i

Negative cycles

Def. A negative cycle is a directed cycle for which the sum of its edge lengths is
negative.

Lemma 1. If some v ~+ ¢t path confains a negative cycle, then there does not exist a
shortest v ~+ ¢ path.

Pf. If there exists such a cycle W, then can build a v ~~+ £ path of arbitrarily negative
length by detouring around W as many times as desired.

i

Negative cycles (cont.)

Def. A negative cycle is a directed cycle for which the sum of its edge lengths is
negative.

N

T — | — e —

Lemma 2. If G has no negative cycles, then there exists a shortest v ~- ¢ path that is
simple (and has n — 1 edges).
Pf.

« Among all shortest v ~~ t paths, consider path P that uses the fewest edges.
« [f that path P contains a directed cycle W, can remove the portion of P
corresponding to W without increasing its length.

Two problems

Single-destination shortest-paths problem. Given a digraph G = (V, E') with
edge lengths [,,,, (but no negative cycles) and a distinguished node t, find a shortest
v ~=+ t path for every node v.

Negative-cycle problem. Given a digraph G = (V, E) with edge lengths [,.,,, find a
negative cycle (if one exists).

N, T TN

2

LN Lo

i

Quiz: shortest-paths via DP

Which sub-problems to find shortest v ~+ t paths for every node v?

A. OPT'(i,v) = length of shortest v ~~ t path that uses exactly i edges.

B. OPT'(i,v) = length of shortest v ~~ t path that uses at most i edges.
C. Neither A nor B.

i

Quiz: shortest-paths via DP

Which sub-problems to find shortest v ~+ t paths for every node v?

A. OPT'(i,v) = length of shortest v ~~ t path that uses exactly i edges.
B. OPT'(i,v) = length of shortest v ~~ t path that uses at most i edges.
C. Neither A nor B.

A: cannot eliminate shorter paths, since adding a negative edge may greatly reduce
length and cancel previous effort, thus reduce to brute-force

DP for shortest-paths

Def. OPT'(i,v) = length of shortest v ~ t path that uses < i edges.

Goal. OPT (n—-1,v) for each v.

« by Lemma 2, simple path has < n-1 edges.

i

DP for shortest-paths

Def. OPT'(i,v) = length of shortest v ~ t path that uses < i edges.
Goal. OPT'(n-1,v) for each v.
by Lemma 2, simple path has < n-1 edges.
Case 1. Shortest v ~~ t path uses < i-1 edges.
« OPT'(i,v) = OPI'(i-1,v).
Case 2. Shortest v ~~ ¢ path uses exactly ¢ edges.

e if (v, w) is first edge in shortest such v ~~ t path, incur a cost of [,,,.
« Then, select best w ~~ t path using < i—1 edges.

i

DP for shortest-paths: Bellman

Def. OPT'(i,v) = length of shortest v ~ t path that uses < i edges.
Goal. OPT'(n-1,v) for each v.

Case 1. Shortest v ~ ¢ path uses < -1 edges.

Case 2. Shortest v ~~ £ path uses exactly i edges.

Bellman equation.

0
OPT'(i,v) = { o0
min{OPT (i — 1,v), ming, ,,ce{OPT (i — 1,w) + lyw }}

ifi =0 and v
ifi = 0 and ¢
ifi >0

i

DP for shortest-paths: algorithm

SHORTEST-PATHS(V, E, L, 1)

1. FOREACH node v € V: M[0,v] = oo;
2. M|[0,t] = 0;
3. FOR:i=1..n-1:
1. FOREACH node v € V.
1. M[i,v] = M[i-1, v];

2. FOREACH edge (v, w) € E: M[i,v] = min{M][i,v], M[i-1,w] + lyu}:

0

OPT(iH)= 8
min{OPT (i — 1,v), ming, ,)eg{OPT (i — 1,w) + L, }}

ifi=0and
ifi =0and v
ifi>0

i

DP for shortest-paths: analysis

Theorem 1. Given a digraph G = (V, E) with no negative cycles, the DP algorithm

computes the length of a shortest v ~~ t path for every node v in ©(mn) time and
©(n?) space.
Pf.

« Table requires ©(n?*) space.
« Each iteration ¢ takes ©(m) time since we examine each edge once.

i

DP for shortest-paths: trace-back
Finding the shortest paths.

« Approach 1: Maintain succe=s=sor[i, v] that points to next node on a shortest
v ~=+ t path using < i edges.

« Approach 2: Compute optimal lengths M [i, v| and consider only edges with
M|i,v| = M|i-1,w| + l,,,. Any directed path in this subgraph is a shortest path.

=
=
= | b

3 4 5
0|00
=4 |=6|=6
-2 |=2|=2
3|3
2

= o ~ T
8
I
T
I
Lk

~%
i
bt | b |t | R

8

Sliww o
s

i

Quiz: DP for shortest-paths

It is easy to modify the DP algorithm for shortest paths to ...

A. Compute lengths of shortest paths in O(mn) time and O(m + n) space.
B. Compute shortest paths in O(mn) time and O(m + n) space.

C. Both A and B.
D. Neither A nor B.

Shortest-paths: practical improvements

Space optimization. Maintain two 1D arrays (instead of 2D array).

« d|v] = length of a shortest v ~ t path that we have found so far.
* successor|[V]=next node onawv ~» t path.

Performance optimization. If d[w| was not updated in iteration 7—1, then no reason
to consider edges entering w in iteration 1.

i

Bellman—-Ford-Moore
BELLMAN-FORD-MOORE(V, F, ¢, t)

FOREACH node v:

d[v] = INF;
successor[v] = null;
d[t] = 0;
FOR 1 =1 .. n— 1:

FOREACH node w:
IF (d[w] was updated in previous pass):

FOREACH edge (v, W):
TF (AdAlrsrl > Alrwl 4+ 1 vy Alsrl = AlTwl 4+ 1

RTTaT =

Quiz: Bellman-Ford-Moore

Which properties must hold after pass : of Bellman—Ford—Moore?

A. d[v| = length of a shortest v ~+ t path using < i edges.

B. d/v| = length of a shortest v ~~ ¢ path using exactly i edges.
C. Both A and B.
D. Neither A nor B.

i

Quiz: Bellman-Ford-Moore

Which properties must hold after pass : of Bellman—Ford—Moore?

A. d[v| = length of a shortest v ~+ t path using < i edges.

B. d/v| = length of a shortest v ~~ ¢ path using exactly i edges.
C. Both A and B.
D. Neither A nor B.

D. Now i is just a counter of n — 1 iterations.

Bellman-Ford—-Moore: analysis

Lemma 3. For each node v: d[v| is the length of some v ~~ ¢ path.
Lemma 4. For each node v: d[v| is monotone non-increasing.

i

Bellman-Ford—-Moore: analysis

Lemma 3. For each node v: d[v| is the length of some v ~~ ¢ path.
Lemma 4. For each node v: d[v| is monotone non-increasing.

Lemma 5. After pass i, d v| < length of a shortest v ~~ ¢ path using < 7 edges.
Pf. [by induction on i]

 Base case: i = 0; Assume true after pass i.
e Let P be any v ~~ t path with < i + 1 edges.
e Let (v, w) be first edge in P and let P’ be subpath from w to ¢.

« By inductive hypothesis, at the end of pass 7, d(w| < I(P’'), because P’ is a
w ~~ t path with < i edges.
« After considering edge (v, w) in pass ¢ + 1:

d[v] < lyw + d[w]
< lyw + I(P)
—I(P)

Bellman-Ford—-Moore: analysis (cont.)

Theorem 2. Assuming no negative cycles, Bellman—Ford—Moore computes the
lengths of the shortest v ~ ¢ paths in O(mn) time and ©(n) extra space.
Pf. Lemma 2 + Lemma 5.

» shortest path exists and has at most n — 1 edges
« after i passes, d/v| < length of shortest path that uses < i edges

i

Bellman-Ford—-Moore: analysis (cont.)

Theorem 2. Assuming no negative cycles, Bellman—Ford—Moore computes the
lengths of the shortest v ~~ t paths in O(mn) time and ©(n) extra space.
Pf. Lemma 2 + Lemma 5.

» shortest path exists and has at most n — 1 edges
« after i passes, d/v| < length of shortest path that uses < i edges

Remark. Bellman—Ford—Moore is typically faster in practice.

« Edge (v, w) considered in pass ¢ + 1 only if d/w| updated in pass .
« |[f shortest path has k edges, then algorithm finds it after < k passes.

Quiz: Bellman—-Ford-Moore trace-back

Assuming no negative cycles, which properties must hold throughout Bellman—Ford—
Moore?

A. Following successor|v] pointers gives a directed v ~+ £ path.

B. If following successor[v] pointers gives a directed v ~ ¢ path, then the length of
that v ~ ¢ path is d|v|.

C. Both A and B.

D. Neither A nor B.

Bellman—-Ford—-Moore: trace-back

Claim. : ' successorfvipoiRters-gives
| d[v]-.

Counterexample. Claim is false!

« Length of successor v ~+ t path may be strictly shorter than d|v|.

sccessor| 2] = siccessor] =1

tﬂlli 20 :.I'l]l =10 :‘Il-rl:"r-] ['-J'r. r'|,".|.n_r1:|: |] '-;r-n'.rn.-.r“' -3
--ﬂ:f:ﬂl r.lrlllzz dllrl:ll
: I

‘ 1
FHE E‘.'l'-l'-'r.j'l =] ({ LTIE 'l"l:"'-'ll.'.l":_.;: =1 y
d3] =1 i3] = |

Bellman-Ford-Moore: trace-back

Claim. : ' successorfvipoiRters-gives
| d[v]-.

Counterexample. Claim is false!

« Length of successor v ~+ t path may be strictly shorter than d|v|.
« With negative cycle, successor graph may have directed cycles.

d3] = 10 d|2) =8 d13] =10 d[2] =8

9 ':ﬂ,i =) 0 |:Ir|.|'] ={
| 3
5

IS Pt S S

dld] =11 dll|=3 dl4] =11 dl1]1=3

i

Bellman—-Ford—Moore: shortest paths

Lemma 6. Any directed cycle W in the successor graph is a negative cycle.
Pf.

¢ If successor[v]=w, we must have dlv| > dw| + L.

e Letvy — v2 —+ ... — v — vy De sequence in a directed cycle W.

« Assume that (v, v1) is the last edge in W added to successor graph.
« Just prior to that:

dlvi] > l(v1,v2) + d|vz]

dlviq] = Wvg1,v) + dlvg
d|vk| > l(vk,v1) + d|v1] strict less: updating now

 Adding inequalities yields I(vy, v2) + lve, v3) + ... + vk, vr) + (vg,v1) < 0.

i

BFM: shortest paths (cont.)

Theorem 3. Assuming no negative cycles, Bellman—Ford-Moore finds shortest v ~~

t paths for every node v in O(mn) time and ©(n) extra space.
Pf.

e The successor graph cannot have a directed cycle. [Lemma 6]
e let Plv=v; - vo — ... — v, = t be following successor pointers.
« Upon termination, if successar[v] = w, we must have d[v] = djw]| + L.

dfv1] = l(v1,v2) + d[vo]
dlva| = l(ve, v3) + d|vs]
d|via] = Uvk-1,vx) + d|vk]

« Adding equations yields d|v| = d[t] + l(v1,v2) + l(vo,v3) + ... + (vE1, Vk).

i

Distance-vector protocols

i

Communication network

Communication network.

» Node = router.
» Edge = direct communication link.
« Length of edge = latency of link.

Dijkstra’s algorithm. Requires global information of network.
Bellman-Ford-Moore. Uses only local knowledge of neighboring nodes.

Synchronization. We don't expect routers to run in lockstep.

« The order in which each edges are processed in Bellman—Ford—Moore is not
important.
« Moreover, algorithm converges even Iif updates are asynchronous.

Distance-vector routing protocols
Distance-vector routing protocols. [“routing by rumor”]

» Each router maintains a vector of shortest-path lengths to every other node
(distances) and the first hop on each path (directions).

« Algorithm: each router performs n separate computations, one for each potential
destination node.

Ex. Routing Information Protocol (RIP), Xerox XNS RIP, Novell's IPX RIP, Cisco’s
IGRP, DEC's DNA Phase |V, AppleTalk's RTMP.

i

Distance-vector routing protocols
Distance-vector routing protocols. [“routing by rumor”]

« Each router maintains a vector of shortest-path lengths to every other node
(distances) and the first hop on each path (directions).

« Algorithm: each router performs n separate computations, one for each potential
destination node.

Ex. Routing Information Protocol (RIP), Xerox XNS RIP, Novell's IPX RIP, Cisco’s
IGRP, DEC's DNA Phase |V, AppleTalk's RTMP.

Caveat. Edge lengths may change during algorithm (or fail completely).

i

53 1 = =
g7y) Pl
1 5 I]+‘“ |

1~ Deleted —

Path-vector routing protocols

Link-state routing protocols.

« Each router stores the whole path (or network topology).

« Based on Dijkstra’s algorithm.

« Avoids “counting-to-infinity” problem and related difficulties.
» Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

Negative cycles

Detecting negative cycles

Negative cycle detection problem. Given a digraph G =

L., find a negative cycle (if one exists).

N

=3

c,‘Ml—-“——('\)"—“*\—.h

&

(V, E), with edge lengths

Detecting negative cycles: application

Currency conversion. Given n currencies and exchange rates between pairs of
currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

i

Detecting negative cycles - |

Lemma?7.If OPT'(n,v) = OPT (n—-1,v) for every node v, then no negative cycles.
Pf. The OPT'(n,v) values have converged = shortest v ~ t path exists.

Lemma8. If OPT'(n,v) < OPT(n-1,v) for some node v, then (any) shortest v ~ ¢
path of length < n contains a cycle W. Moreover W is a negative cycle.
Pf. [by contradiction]

» Since OPT'(n,v) < OPT'(n-1,v), we know that shortest v ~+ t path P has
exactly n edges.

» By pigeonhole principle, the path P must contain a repeated node .
« Let W be any cycle in P.

e Deleting W vyields a v ~+ t path with < n edges = W is a negative cycle.

i

Detecting negative cycles - li

Theorem 4. Can find a negative cycle in ©(mn) time and ©(n2) space.
Pf.

Construct Augmented graph G': Add new sink node ¢t and connect all nodes to ¢
with 0-length edge.

« (has a negative cycle iff G' has a negative cycle.
Case 1. [OPT'(n,v) = OPT'(n—1,v) for every node v]
« By Lemma 7, no negative cycles.
Case 2. [OPT'(n,v) < OPT(n-1,v) for some node v]

« Using proof of Lemma 8, can extract negative cycle from »~t path. (cycle cannot
contain ¢ since no edge leaves t)

i

Detecting negative cycles - lli

Theorem 5. Can find a negative cycle in O(mn) time and O(n) extra space.
Pf.

e RUN Bellman-Ford-Mocore ON G' for n' = n + 1 passes (instead of n'-1).
« If no d[v| values updated in pass n’, then no negative cycles.

« Otherwise, suppose d|s| updated in pass n'.

« Define pas==(v) = last pass in which d[v| was updated.

e Observe pa=s(s) =n'and pass(successor[v]) 2 pass(v) -1 for each v.
« Following successor pointers, we must eventually repeat a node.

« Lemma 6 = the corresponding cycle is a negative cycle.

