Algorithm II

5. Divide and Conquer I

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Divide-and-conquer paradigm

Divide-and-conquer.

- Divide up problem into several sub-problems (of the same kind).
- Solve (conquer) each subproblem recursively.
- Combine solutions to sub-problems into overall solution.

Divide-and-conquer paradigm

Divide-and-conquer.

- Divide up problem into several sub-problems (of the same kind).
- Solve (conquer) each subproblem recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Divide problem of size n into *two* sub-problems of size n/2.
- Solve (conquer) two sub-problems recursively.
- Combine two solutions into overall solution.

Divide-and-conquer paradigm

Divide-and-conquer.

- Divide up problem into several sub-problems (of the same kind).
- Solve (conquer) each subproblem recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Divide problem of size n into *two* sub-problems of size n/2.
- Solve (conquer) two sub-problems recursively.
- Combine two solutions into overall solution.

Benefit. Closest Pair Problem:

- Brute force: $\Theta(n^2)$.
- Divide-and-conquer: $O(n \log n)$.

Mergesort

Sorting problem

Problem. Given a list L of n elements from a totally ordered universe, rearrange them in ascending order.

Sorting applications

Obvious applications.

- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.

- Identify statistical outliers.
- Binary search in a database.
- Remove duplicates in a mailing list.

Non-obvious applications.

- · Convex hull.
- Closest pair of points.
- Interval scheduling / interval partitioning.
- Scheduling to minimize maximum lateness.

Mergesort

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.

- Scan A and B from left to right.
- Compare a_i and b_j .
- If $a_i \leq b_j$, append a_i to C (no larger than any remaining element in B).
- If $a_i > b_j$, append b_j to C (smaller than every remaining element in A).

Mergesort implementation

Input. List L of n elements from a totally ordered universe. **Output**. The n elements in ascending order.

- 1. IF (list L has one element) RETURN L;
- 2. Divide the list into two halves A and B;
- 3. A = MERGE-SORT(A): T(n/2);
- 4. B = MERGE-SORT(B): T(n/2);
- 5. $L = MERGE(A, B): \Theta(n);$
- 6. RETURN L;

Recurrence relation: divide-by-2

Def. T(n) = max number of compares to mergesort a list of length n.

Recurrence.

$$T(n) \leq \left\{egin{array}{ll} 0 & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + cn & ext{if} & n>1 \end{array}
ight.$$

• Base case: $T(2) \leq 2c$ is a constant; cn = O(n).

Solution. T(n) is $O(n \log_2 n)$.

Recurrence relation: divide-by-2

Def. $T(n) = \max \text{ number of compares to mergesort a list of length } n$.

Recurrence.

$$T(n) \leq \left\{egin{array}{ll} 0 & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + cn & ext{if} & n>1 \end{array}
ight.$$

• Base case: $T(2) \leq 2c$ is a constant; cn = O(n).

Solution. T(n) is $O(n \log_2 n)$.

Assorted proofs. several ways to solve this recurrence (following slides).

- Initially, assume n is a power of 2 and replace \leq with =.
- Asymptotic bounds are not affected by ignoring floors/ceilings.

Recurrence Pf. 1: unrolling tree

Proposition. If T(n) satisfies the following recurrence, then $T(n) = cn \log_2 n$.

$$T(n) = \left\{egin{array}{ll} 0 & ext{if} & n=1 \ 2T(n/2) + cn & ext{if} & n>1 \end{array}
ight.$$

Pf. [by identifying a pattern] cn per level, $\log_2 n$ levels.

Recurrence Pf. 2: substitution

Proposition. If T(n) satisfies the following recurrence, then $T(n) = cn \log_2 n$.

$$T(n) = \left\{egin{array}{ll} 0 & ext{if} & n=1 \ 2T(n/2) + cn & ext{if} & n>1 \end{array}
ight.$$

Pf. [by induction on n]

- $T(1) = 0 = cn \log_2 n$.
- assume $T(n/2) = c(n/2) \log_2(n/2)$.

$$T(n) = 2T(n/2) + cn$$

= $2c(n/2)\log_2(n/2) + cn$
= $cn[(\log_2 n) - 1] + cn$
= $(cn\log_2 n) - cn + cn$
= $cn\log_2 n$

Recurrence Pf. 3: partial substitution

Proposition. If T(n) satisfies the following recurrence, then $T(n) = cn \log_2 n$.

$$T(n) = \left\{egin{array}{ll} 0 & ext{if} & n=1 \ 2T(n/2) + cn & ext{if} & n>1 \end{array}
ight.$$

Pf. [guess $T(n) = kn \log_b n$]

- $T(n) = 2k(n/2)\log_b(n/2) + cn$.
 - b = 2 looks good for halving.
 - $T(n) = (kn \log_2 n) kn + cn.$
 - $\circ k = c$ makes the guess right.

Quiz: divide-by-2 recurrence

Which is the exact solution of the following recurrence?

$$T(n) = \left\{egin{array}{ll} 0 & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + n-1 & ext{if} & n>1 \end{array}
ight.$$

$$\mathbf{A}.\ T(n) = n \lfloor \log_2 n \rfloor$$

B.
$$T(n) = n \lceil \log_2 n \rceil$$

C.
$$T(n) = n \lfloor \log_2 n \rfloor + 2^{\lfloor \log_2 n \rfloor} - 1$$

$$\mathbf{D}.\ T(n) = n\lceil \log_2 n \rceil - 2^{\lceil \log_2 n \rceil} + 1$$

E. Not even Knuth knows.

Quiz: divide-by-2 recurrence

Which is the exact solution of the following recurrence?

$$T(n) = \left\{egin{array}{ll} 0 & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + n-1 & ext{if} & n>1 \end{array}
ight.$$

$$\mathbf{A}.\ T(n) = n \lfloor \log_2 n \rfloor$$

B.
$$T(n) = n \lceil \log_2 n \rceil$$

C.
$$T(n) = n \lfloor \log_2 n \rfloor + 2^{\lfloor \log_2 n \rfloor} - 1$$

$$\mathbf{D}.\ T(n) = n\lceil \log_2 n \rceil - 2^{\lceil \log_2 n \rceil} + 1$$

E. Not even Knuth knows.

$$egin{align} T(2n) &= 2T(n) + 2n - 1 \ (D) &= 2n\lceil \log_2 n \rceil - 2^{\lceil \log_2 n \rceil + 1} + 2 + 2 \ &= 2n\lceil \log_2 n \rceil - 2^{\lceil \log_2 n \rceil + 1} + 2n + 2 \ \end{aligned}$$

Mergesort: analysis

Proposition. If T(n) satisfies the following recurrence, then $T(n) \leq n \lceil \log_2 n \rceil$.

$$T(n) \leq \left\{egin{array}{ll} 0 & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + n & ext{if} & n>1 \end{array}
ight.$$

Pf. [by strong induction on n]

Induction step: assume true for $1, 2, \ldots, n-1$.

Let $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$: note that $n = n_1 + n_2$.

$$T(n) \leq T(n_1) + T(n_2) + n$$
 $n_2 = \lceil n/2 \rceil$
 $\leq n_1 \lceil \log_2 n_1 \rceil + n_2 \lceil \log_2 n_2 \rceil + n$ $\leq \lceil 2^{\lceil \log_2 n \rceil} / 2 \rceil$
 $\leq n_1 \lceil \log_2 n_2 \rceil + n_2 \lceil \log_2 n_2 \rceil + n$ $= 2^{\lceil \log_2 n \rceil} / 2$
 $= n \lceil \log_2 n_2 \rceil + n$ \Downarrow
 $(*) \leq n(\lceil \log_2 n \rceil - 1) + n$ $(*) \log_2 n_2 \leq \lceil \log_2 n \rceil - 1$
 $= n \lceil \log_2 n \rceil$

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.

- Can access the elements only through pairwise comparisons.
- · All other operations (control, data movement, etc.) are free.

Cost. Number of compares.

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.

- Can access the elements only through pairwise comparisons.
- All other operations (control, data movement, etc.) are free.

Cost. Number of compares.

Q. Realistic model?

A1. Yes. Java, Python, C++, etc.

A2. Yes. Mergesort, insertion sort, quicksort, heapsort, etc.

A3. No. Bucket sort, radix sorts, etc.

sort(*, key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially modified state).

Comparison tree (3 distinct keys)

Sorting lower bound

Theorem. Any *deterministic* compare-based sorting algorithm must make $\Theta(n \log n)$ compares in the worst-case.

Pf. [information theoretic]

- Assume array consists of n distinct values a₁..a_n.
- Worst-case number of compares = height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^h$ leaves.
- n! different orderings ⇒ n! reachable leaves.

Sorting lower bound (cont.)

Theorem. Any *deterministic* compare-based sorting algorithm must make $\Theta(n \log n)$ compares in the worst-case.

Pf. [information theoretic]

- Assume array consists of n distinct values a₁..a_n.
- Worst-case number of compares = height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^h$ leaves.
- n! different orderings ⇒ n! reachable leaves.

$$2^h \geq n!$$
 $\Rightarrow h \geq \log_2 n!$ $(Stirling's) \geq n \log_2 n - n/\ln 2$

Further Recurrence Relations

Recurrence Relations

More general formulation: recursively solve q sub-problems of size n/2 each:

$$T(n) \leq \left\{egin{array}{ll} 0 & ext{if} & n=1 \ qT(n/2)+cn & ext{if} & n>1 \end{array}
ight.$$

• Base case: $T(2) \le 2c$ is a constant; cn = O(n).

Recurrence Relations: $q \geq 2$

Proposition. If T(n) satisfies the following recurrence with $q \geq 2$, then $T(n) = O(n^{\log_2 q})$.

$$T(n) \le qT(n/2) + cn$$

Pf. Geometric sum: $\sum_{j=0}^{\log_2 n-1} (r)^j = \frac{r^{\log_2 n}-1}{r-1}$.

Recurrence Relations: $q \geq 2$

Proposition. If T(n) satisfies the following recurrence with $q \geq 2$, then $T(n) = O(n^{\log_2 q})$.

$$T(n) \le qT(n/2) + cn$$

Pf. Geometric sum: $\sum_{j=0}^{\log_2 n-1} (r)^j = \frac{r^{\log_2 n}-1}{r-1}$.

Especially,
$$O(n^{\log_2 3}) = O(n^{1.59})$$
, $O(n^{\log_2 4}) = O(n^2)$.

Recurrence Relations: q=1

Proposition. If T(n) satisfies the following recurrence with q=1, then T(n)=O(n).

$$T(n) \le qT(n/2) + cn$$

Pf. Geometric sum: $\sum_{j=0}^{\log_2 n-1} (\frac{1}{2^j}) = 2$.

Recurrence Relations: quadratic time

Special case: spending quadratic time for the initial division and final recombining.

$$T(n) \leq \left\{egin{array}{ll} 0 & ext{if} & n=1 \ 2T(n/2) + cn^2 & ext{if} & n>1 \end{array}
ight.$$

• Base case: $T(2) \leq 4c$ is a constant; $cn^2 = O(n^2)$.

Recurrence Relations: quadratic time

Special case: spending quadratic time for the initial division and final recombining.

$$T(n) \leq \left\{egin{array}{ll} 0 & ext{if} & n=1 \ 2T(n/2) + cn^2 & ext{if} & n>1 \end{array}
ight.$$

• Base case: $T(2) \leq 4c$ is a constant; $cn^2 = O(n^2)$.

Solution. T(n) is $O(n^2 \log_2 n)$.

Pf. Geometric sum: $\sum_{i=0}^{\log_2 n-1} (\frac{1}{2^i}) = 2$.

Counting inversions

Music recommendation

Music recommendation. Music site tries to match your preference with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Music recommendation

Music recommendation. Music site tries to match your preference with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: a_1, a_2, \ldots, a_n .
- Songs i and j are inverted if i < j, but $a_i > a_j$.

	Α	В	С	D	E 5	
me	1	2	3	4		
you	1	3	4	2	5	

Music recommendation

Music recommendation. Music site tries to match your preference with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: a_1, a_2, \ldots, a_n .
- Songs i and j are inverted if i < j, but $a_i > a_j$.

	Α	В	С	D	E 5	
me	1	2	3	4		
you	1	3	4	2	5	

Brute force: check all $\Theta(n^2)$ pairs.

Counting inversions: divide-and-conquer

- Divide: separate list into two halves A and B.
- Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A, b \in B$.
- Return sum of three counts.

1	5	4	8	10	2	6	9	3	7
1	5	4	8	10					
2	6	9	3	7					

Output. 1 + 3 + 13 = 17.

Counting inversions: how to combine?

- **Q**. How to count inversions (a,b) with $a \in A, b \in B$?
- A. Easy if A and B are sorted!

Warmup algorithm.

- 1. Sort A and B
- 2. For each element $b_i \in B$:
 - 1. binary search $\arg\min_i\{b_j < a_i\}$;

7	10	18	3	14	20	23	2	11	16
3	7	10	14	18					
2	11	16	20	23					

Output. 5+2+1+0+0=8.

Counting inversions: merge-and-count

Count inversions (a,b) with $a \in A, b \in B$, assuming A and B are sorted.

Scan A and B from left to right:

- Compare a_i and b_j.
 - If $a_i < b_j$, then a_i is not inverted with any element left in B.
 - If $a_i > b_j$, then b_j is inverted with *every* element left in A.
- Append smaller element to sorted list C.

7	10	18	3	14	20	23	2	11	16
3	7	10	14	18					
			a_i	18					
	11	16	20	23					
5	2	b_{j}	20	23					
2	3	7	10	11					

Counting inversions: algorithm

Input. List L.

Output. Number of inversions in L and L in sorted order.

- 1. IF (list L has one element) RETURN (0, L);
- 2. Divide the list into two halves A and B;
- 3. $(r_A, A) = SORT-AND-COUNT(A)$: T(n/2);
- 4. $(r_B, B) = \text{SORT-AND-COUNT}(B)$: T(n/2);
- 5. (r_{AB}, L) = MERGE-AND-COUNT(A, B): $\Theta(n)$;
- 6. RETURN $(r_A + r_B + r_{AB}, L)$;

Counting inversions: analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size n in $O(n \log n)$ time.

Pf. The worst-case running time T(n) satisfies the recurrence:

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + \Theta(n) & ext{if} & n>1 \end{array}
ight.$$

Randomized quicksort

3-way partitioning

Goal. Given an array A and pivot element p, partition array so that:

- ullet Smaller elements in left sub-array L.
- Equal elements in middle sub-array M.
- Larger elements in right sub-array R.

7	6	12	3	11	8	9	1	4	10	2
L			6 R							
3	1	4	2	6	7	12	11	8	9	10

3-way partitioning

Goal. Given an array A and pivot element p, partition array so that:

- Smaller elements in left sub-array L.
- Equal elements in middle sub-array M.
- Larger elements in right sub-array R.

7	6	12	3	11	8	9	1	4	10	2
L 6			6	R R						
3	1	4	2	6	7	12	11	8	9	10

Challenge. O(n) time and O(1) space.

Demo: 3-way partitioning

Randomized quicksort: idea

- Pick a random pivot element $p \in A$.
- 3-way partition the array into L, M, and R.
- ullet Recursively sort both L and R.

	7	6	12	3	11	8	9	1	4	10	2
partition	3	1	4	2	6	7	12	11	8	9	10
sort L	1	2	3	4	6						
sort R					6	7	8	9	10	11	12
sorted	1	2	3	4	6	7	8	9	10	11	12

Randomized quicksort: algorithm

Input. List A.

Output. A in sorted order.

- IF (list A has zero or one element) RETURN;
- 2. Pick pivot $p \in A$ uniformly at random;
- 3. (L, M, R) = PARTITION-3-WAY(A, p): $\Theta(n)$;
- 4. RANDOMIZED-QUICKSORT(L): T(i);
- 5. RANDOMIZED-QUICKSORT(R): T(n-i-1);

Demo: Randomized quicksort

Randomized quicksort: analysis

Proposition. The expected number of compares to quicksort an array of n distinct elements $a_1 < a_2 < \ldots < a_n$ is $O(n \log n)$.

Pf. Consider BST representation of pivot elements.

- a_i and a_j are compared once iff one is an ancestor of the other.
 - a₃ and a₆ are compared (when a₃ is pivot)
 - a_2 and a_8 are not compared (because a_3 partitions them)

Quiz: Quicksort 1

Given an array of $n \geq 8$ distinct elements $a_1 < a_2 < \ldots < a_n$, what is the probability that a_7 and a_8 are compared during randomized quicksort?

A. 0

B. 1/n

C. 2/n

D. 1

Quiz: Quicksort 1

Given an array of $n \geq 8$ distinct elements $a_1 < a_2 < \ldots < a_n$, what is the probability that a_7 and a_8 are compared during randomized quicksort?

A. 0

B. 1/n

C. 2/n

D. 1

D: ancestry

Quiz: Quicksort 2

Given an array of $n \geq 2$ distinct elements $a_1 < a_2 < \ldots < a_n$, what is the probability that a_1 and a_n are compared during randomized quicksort?

A. 0

B. 1/n

C. 2/n

D. 1

Quiz: Quicksort 2

Given an array of $n \geq 2$ distinct elements $a_1 < a_2 < \ldots < a_n$, what is the probability that a_1 and a_n are compared during randomized quicksort?

A. 0

B. 1/n

C. 2/n

D. 1

C: compared iff either is chosen as pivot before any of the other

Randomized quicksort: analysis (cont. 1)

Proposition. The expected number of compares to quicksort an array of n distinct elements $a_1 < a_2 < \ldots < a_n$ is $O(n \log n)$.

Pf. Consider BST representation of pivot elements.

- a_i and a_j are compared once iff one is an ancestor of the other.
- Pr [a_i and a_j are compared] = 2/(j-i+1), where i < j.
 - $Pr[a_2 \text{ and } a_8 \text{ compared}] = 2/7 \text{ compared if either } a_2 \text{ or } a_8 \text{ is chosen as pivot before any of } \{a_3, a_4, a_5, a_6, a_7\}$

Randomized quicksort: analysis (cont. 2)

Proposition. The expected number of compares to quicksort an array of n distinct elements $a_1 < a_2 < \ldots < a_n$ is $O(n \log n)$.

Pf. Consider BST representation of pivot elements.

- a_i and a_i are compared once iff one is an ancestor of the other.
- Pr [a_i and a_j are compared] = 2/(j-i+1), where i < j.

Expected number of compares:

$$egin{align} \sum_{i=1}^n \sum_{j=i+1}^n rac{2}{j-i+1} &= 2 \sum_{i=1}^n \sum_{j=2}^{n-i+1} rac{1}{j} \ &\leq 2n \sum_{j=1}^n rac{1}{j} \ & (harmonic) \leq 2n (\ln n + 1) \ \end{matrix}$$

Randomized quicksort: analysis (cont. 2)

Proposition. The expected number of compares to quicksort an array of n distinct elements $a_1 < a_2 < \ldots < a_n$ is $O(n \log n)$.

Pf. Consider BST representation of pivot elements.

- a_i and a_i are compared once iff one is an ancestor of the other.
- Pr [a_i and a_j are compared] = 2/(j-i+1), where i < j.

Expected number of compares:

$$egin{align} \sum_{i=1}^n \sum_{j=i+1}^n rac{2}{j-i+1} &= 2 \sum_{i=1}^n \sum_{j=2}^{n-i+1} rac{1}{j} \ &\leq 2n \sum_{j=1}^n rac{1}{j} \ & (harmonic) \leq 2n (\ln n + 1) \ \end{matrix}$$

Remark. Number of compares only decreases on equal elements.

Closest pair of points

Closest Pair Problem

Closest Pair Problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

Closest Pair Problem

Closest Pair Problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Closest Pair Problem

Closest Pair Problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs with (n^2) distance calculations.

- 1D version. Easy $O(n \log n)$ algorithm if points are on a line.
- Non-degeneracy assumption. No two points have the same x-coordinate.

Closest Pair: first attempt

Sorting solution.

- Sort by x-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.

Closest Pair: second attempt

Divide. Subdivide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair: divide-and-conquer

- **Divide**: draw vertical line L so that n/2 points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
 - looks like Θ(n²)?
- Return best of 3 solutions.

Closest pair: one point in each side?

Find closest pair with one point in each side, assuming that distance $< \delta$.

Observation: suffices to consider only those points within δ of line L.

Closest pair: one point in each side? (cont.)

Find closest pair with one point in each side, assuming that distance $< \delta$.

Observation: suffices to consider only those points within δ of line L.

- Sort points in 2 δ-strip by their y-coordinate.
- Check distances of only those points within 7 positions in sorted list!
 - But, why?

Closest pair: one point in each side

Def. Let s_i be the point in the 2 δ -strip, with the i^{th} smallest y-coordinate.

Claim. If |j-i| > 7, then the distance between s_i and s_j is at least δ . **Pf**.

Consider the 2δ -by- δ rectangle R in strip whose min y-coordinate is y-coordinate of s_i .

- Distance between s_i and any point s_j outside R is $\geq \delta$.
- Subdivide R into 8 squares.
 - At most 1 point per square.
 otherwise, δ * √2/2 < δ.
 - At most 7 other points can be in R.

Closest pair: algorithm

Input. n points $P = p_1, p_2, \dots, p_n$. Output. distance δ .

- 1. Compute vertical line L such that half the points are on each side of the line: O(n);
- 2. $\delta_1 = \text{CLOSEST-PAIR}(\text{points in left half}): T(n/2);$
- 3. $\delta_2 = \text{CLOSEST-PAIR}(\text{points in right half}): T(n/2);$
- 4. $\delta = \min\{\delta_1, \delta_2\};$
- 5. Delete all points further than δ from line L: O(n);
- 6. Sort remaining points by y-coordinate: $O(n \log n)$;
- 7. Scan points in y-order and compare distance between each point and next 7 neighbors. If any of these distances is less than δ , update δ .
- 8. RETURN δ .

Quiz: Closest pair

What is the solution to the following recurrence?

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + \Theta(n \log n) & ext{if} & n>1 \end{array}
ight.$$

A.
$$T(n) = \Theta(n)$$
.

B.
$$T(n) = \Theta(n \log n)$$
.

$$\mathbf{C}.\ T(n) = \Theta(n\log^2 n).$$

$$\mathbf{D}.\ T(n) = \Theta(n^2).$$

Quiz: Closest pair

What is the solution to the following recurrence?

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + \Theta(n \log n) & ext{if} & n>1 \end{array}
ight.$$

- **A**. $T(n) = \Theta(n)$.
- **B**. $T(n) = \Theta(n \log n)$.
- $\mathbf{C}.\ T(n) = \Theta(n\log^2 n).$
- $\mathbf{D}.\ T(n)=\Theta(n^2).$

C

Closest pair: Refined algorithm

- **Q**. How to improve to $O(n \log n)$?
- A. Don't sort points in strip from scratch each time.
 - Each recursive call returns two lists: all points sorted by x-coordinate, and all
 points sorted by y-coordinate.
 - Sort by merging two pre-sorted lists.

Closest pair: Refined algorithm

- **Q**. How to improve to $O(n \log n)$?
- A. Don't sort points in strip from scratch each time.
 - Each recursive call returns two lists: all points sorted by x-coordinate, and all
 points sorted by y-coordinate.
 - Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding a closest pair of points in the plane can be implemented in $O(n\log n)$ time.

Pf.

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + \Theta(n) & ext{if} & n>1 \end{array}
ight.$$

Closest pair: Computational complexity

Theorem. [Ben-Or 1983, Yao 1989] In quadratic decision tree model, any algorithm for closest pair (even in 1D) requires $\Omega(n \log n)$ quadratic tests.

Theorem. [Rabin 1976] There exists an algorithm to find the closest pair of points in the plane whose *expected* running time is O(n).

Digression: computational geometry

Ingenious divide-and-conquer algorithms for core geometric problems.

problem	brute	clever
closest pair	$O(n^2)$	$O(n \log n)$
farthest pair	$O(n^2)$	$O(n \log n)$
convex hull	$O(n^2)$	$O(n \log n)$
Delaunay/Voronoi	$O(n^4)$	$O(n \log n)$
Euclidean MST	$O(n^2)$	$O(n \log n)$

