Algorithm Il

5. Divide and Conquer |

WU Xiaokun 2885

xkun.wu [at] gmail

Divide-and-conquer paradigm

Divide-and-conquer.

 Divide up problem into several sub-problems (of the same Kind).
» Solve (conquer) each subproblem recursively.
« Combine solutions to sub-problems into overall solution.

i

Divide-and-conquer paradigm

Divide-and-conquer.

« Divide up problem into several sub-problems (of the same kind).
» Solve (conquer) each subproblem recursively.
« Combine solutions to sub-problems into overall solution.

Most common usage.

 Divide problem of size n into two sub-problems of size n/2.
« Solve (conquer) two sub-problems recursively.
« Combine two solutions into overall solution.

i

Divide-and-conquer paradigm
Divide-and-conquer.

« Divide up problem into several sub-problems (of the same kind).
» Solve (conquer) each subproblem recursively.
« Combine solutions to sub-problems into overall solution.

Most common usage.

 Divide problem of size n into two sub-problems of size n/2.
« Solve (conquer) two sub-problems recursively.
« Combine two solutions into overall solution.

Benefit. Closest Pair Problem:

« Brute force: ©(n*).
 Divide-and-conquer: O(nlogn).

Mergesort

Sorting problem

Problem. Given a list L of n elements from a totally ordered universe, rearrange
them in ascending order.

i

Sorting applications

Obvious applications.

e Organize an MP3 library.
« Display Google PageRank results.
 List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.

« |dentify statistical outliers.
« Binary search in a database.
« Remove duplicates in a mailing list.

Non-obvious applications.

« Convex hull.

» Closest pair of points.

« Interval scheduling / interval partitioning.

« Scheduling to minimize maximum lateness.

Mergesort

6 7 8§ 91011 12 13 14 15

5

4
M E R G E S O RTEX A MUP L E

& v v

L= - 4 -

G
E ‘E

> X

< -

-

= O >

W= - -

- 0. N

w = &

- O£

w Q.

w O
< =

E G L

A E E E

1l

i

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.

« Scan A and B from left to right.
« Compare a; and b;.

e If a; < b;, append a; to C' (no larger than any remaining element in B).
 Ifa; > b;, append b; to C (smaller than every remaining element in A).

A /1Y

Merged result <

I

by

i

Mergesort implementation

Input. List L of n elements from a totally ordered universe.
Output. The n elements in ascending order.

1. IF (list L has one element) RETURN L;
2. Divide the list into two halves A and B;
3. A = MERGE-SORT(A): T'(n/2);

4. B = MERGE-SORT(B): T(n/2),

5. L =MERGE(A, B): O(n);

6. RETURN L;

i

Recurrence relation: divide-by-2

Def. T'(n) = max number of compares to mergesort a list of length n.

Recurrence.

0 it n=1
Tn) < { T(|n/2])+T([n/2])4+en if n>1
» Base case: T'(2) < 2cis a constant; ecn = O(n).

Solution. T'(n) is O(nlog, n).

i

Recurrence relation: divide-by-2

Def. T'(n) = max number of compares to mergesort a list of length n.

Recurrence.

0 if n=1
T(”]E{ T(In/2)) + T([n/2]) +n if n>1

» Base case: T'(2) < 2cis a constant; ecn = O(n).

Solution. T'(n) is O(nlog, n).

Assorted proofs. several ways to solve this recurrence (following slides).

« [nitially, assume n is a power of 2 and replace < with =,
« Asymptotic bounds are not affected by ignoring floors/ceilings.

i

Recurrence Pf. 1: unrolling tree

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = enlog, n.

0 if n=1
T(”)_{ 2T(n/2) +cen if n>1

: Level O; il
(en) ¢

— S
I{éu':{ 51..-"% Level 1: enf2 + onf2 = m total
f % /
'I;.:_I.-'-'IS il—ﬁ::l {rrrr:'} h'ri%} Leve 2¢ 4len/4) = cn total
.l'r & ‘F \ H'r \
iy £y ! [\

Pf. [by identifying a pattern]
cn per level, log, n levels.

i

Recurrence Pf. 2: substitution

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = enlog, n.

0 if n=1
T(”)_{ 2T(n/2) +cen if n>1

Pf. [by induction on n]

e T'(1) = 0 = cnlog, n.
e assume T'(n/2) = ¢(n/2)log,(n/2).

T(n) =2T(n/2)+cn
= 2¢(n/2) log,(n/2) + cn
= cnl(logyn) — 1| + en
= (enlogyn) —cn + cn

= cn logy n

i

Recurrence Pf. 3: partial substitution

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = enlog, n.

0 if n=1
T(”)_{ 2T(n/2) +cen if n>1

Pf. [guess T'(n) = knlog, n |

e T'(n) = 2k(n/2)log,(n/2) + cn.
= h = 2 looks good for halving.

» T(n) = (knlogy,n) — kn + cn.

o k = ¢ makes the guess right.

i

Quiz: divide-by-2 recurrence

Which is the exact solution of the following recurrence?

0 if n=1
T(”):{ T(|n/2]) + T([n/2]) +n—1 if n>1

A . T(n) =n|log,n|

B.T(n) =nllog,n|

C.T(n) = n|log, n| + 2Ueenl _ 1
D. T(n) = n[log,n] — 28"l 41
E. Not even Knuth knows.

i

Quiz: divide-by-2 recurrence

Which is the exact solution of the following recurrence?

Ty = { © if n=1

"= T(In/2) +T([n/2]) +n—1 if n>1

A.T(n) =nl|log,n|

B.T(n) =nllog,n|

C.T(n) = n|log, n| + 2Ueenl _ 1

D. T(n) = n[logy n] — 28"l 41

E. Not even Knuth knows.

T(2n) =2T(n)+2n—1 T(2n) = 2n[log, 2n| — glloes2n] 4 3
(D] — Zﬂrlﬂ'gg —_,ﬂ =, 2“{:5; n|+1 s AW, _ 2?1{105-_; n + 1‘| " E[Ing.}._ n+41] ofid

— EHHDEE ﬂ'-l - 2|r|ﬂE2ﬂ-|+l 491 4 _ ZH([IUEE ﬂ-| 4 1} o 2““52 n|+1 1

= 2n[log, n] — 2/°&"1+1 4 9p 4

i

Mergesort: analysis

Proposition. If T'(n) satisfies the following recurrence, then T'(n) < n|log, n|.

0 if n=1
T0) < { Dimpa + 2l +n 36 mod

Pf. [by strong induction on n]
Induction step: assume true for 1,2,...,n-1.

Letni = [n/2| and nz = [n/2]: note that n = n; + no.

T(n) <T(m)+T(n2)+n ny = [n/2]
< ny[logy ni] + na[logy na| +n < {Q[iﬂgzﬂ]'/z-[
< ny[log, na| + naflogy na| + n — 9llogzn] /9
= nllogyny| + n)
(¥) < n(|logan]-1) +n (*)log, ns < [logyn| —1

n[log, n|

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Digression: sorting lower bound
Challenge. How to prove a lower bound for all conceivable algorithms?
Model of computation. Comparison trees.

» Can access the elements only through pairwise comparisons.
« All other operations (control, data movement, etc.) are free.

Cost. Number of compares.

i

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.

» Can access the elements only through pairwise comparisons.
» All other operations (control, data movement, etc.) are free.

Cost. Number of compares.

Q. Realistic model?

A1. Yes. Java, Python, C++, elc.

A2. Yes. Mergesort, insertion sort, quicksort, heapsort, elc.
A3. No. Bucket sort, radix sorts, etc.

sorct(*, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items.
Exceptions are not suppressed - if any comparison operations fail, the entire
sort operation will fall (and the list will likely be left in a partially modified

state).

Comparison tree (3 distinct keys)

{abc,acb,bac,bca,cab,cba}

Tes Mo
{abc,acb,cab} {bac,bca,cba}

Tes MG Tes Mo
{gcb,cab} {baoc,bca)

Tes e Yes Mo

{ach} fcab} {bac} {bca}

i

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make ©(n log n)
compares in the worst-case.
Pf. [information theoretic]

« Assume array consists of n distinct values a,..a,.

« Worst-case number of compares = height h of pruned comparison tree.
« Binary tree of height h has < 2" leaves.

« n! different orderings = n! reachable leaves.

h

n! leaves = 2 leaves

i

Sorting lower bound (cont.)

Theorem. Any deterministic compare-based sorting algorithm must make ©(n log n)
compares in the worst-case.
Pf. [information theoretic]

« Assume array consists of n distinct values a,..a,.

« Worst-case number of compares = height h of pruned comparison tree.
« Binary tree of height h has < 2" leaves.

« n! different orderings = n! reachable leaves.

2" > nl
= h > log, n!
(Stirling’s) > nlogon —n/In2

i

Further Recurrence Relations

i

Recurrence Relations

More general formulation: recursively solve g sub-problems of size n/2 each:

0 if n=1
T(”}E{ ¢T(n/2)+en if n>1

« Base case: T'(2) < 2cis a constant; en = O(n).

i

Recurrence Relations: g > 2

Proposition. If T'(n) satisfies the following recurrence with ¢ > 2, then T'(n) =
O(nlo8:9).

T(n) < qT'(n/2)+cn

. I — ; g N
Pt. Geometric sum: 30 %" ' (r)) = 1L

r—1

e time, plus “‘wl Level O e toial
recursive calls A+~

‘3 f;’% : ﬂ% Lewe 1:enf2 + enfd += aqufd = |3/ 2)cn 1odal
= \>"\ g

Iw T4 TLH g.-'-‘l T '@ xTE.'I'I Liovel 2: 9(en/4) = (9o total

IIII'. IIll Illl. d 1

\ | I"'. 'ﬁ".

=R
=
{ =]
Fod

7L -i-\|

/B

.
—
B

i

Recurrence Relations: g > 2

Proposition. If T'(n) satisfies the following recurrence with ¢ > 2, then T'(n) =

O(n'o#:9).

T(n) < qT'(n/2)+cn

Pf. Geometric sum: Z'“"‘?) = 221

r—1

e time, plus

Level 0: cn intal
recursive calls .A_

.f’”_1

'IJ-..
.'r;-fl Ti?%? % T
/N /1)

Especially, O(n'*:*) = O(n'%?), O(n'*®: %) = O(n?).

: i Lewe 1:enf2 + enfd += aqufd = |3/ 2)cn 1odal
'@ Tl Level 2: 9(cn/4) = (94)on total

\ |

A ! II| I II|

i

Recurrence Relations: g = 1

Proposition. If T'(n) satisfies the following recurrence with ¢ = 1, then T'(n) =
O(n).

T(n) < qT'(n/2)+cn

Pf. Geometric sum: Zf?f;“' (L) =2

cn time, plus
& I‘ ’ .
recursive calls G Level 0: an total

6@} Level 1: en /2 Lotal

n/4) Level 2: cn/d total

Recurrence Relations: quadratic time

Special case: spending quadratic time for the initial division and final recombining.

0 if n=1
Thos) 5{ 9T (n/2) + en? if n>1

« Base case: T(2) < 4cis a constant; cn? = O(n?).

i

Recurrence Relations: quadratic time

Special case: spending quadratic time for the initial division and final recombining.

0 if n=1
Thos) E{ 9T(n/2) + en? if n>1

« Base case: T(2) < 4cis a constant; cn? = O(n?).

Solution. T'(n) is O(n? log, n).

Pf. Geometric sum: foﬁ H) =2

i

Counting inversions

Music recommendation

Music recommendation. Music site tries to match your preference with others.

« You rank n songs.
» Music site consults database to find people with similar tastes.

i

Music recommendation

Music recommendation. Music site tries to match your preference with others.

» You rank n songs.
» Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

e« Myrank: 1,2,...,n.
e Yourrank: a;,as,...,a,.
« Songsi and j are inverted if ¢ < j, buta; > a;.

i

Music recommendation

Music recommendation. Music site tries to match your preference with others.

» You rank n songs.
» Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

e« Myrank: 1,2,...,n.
e Yourrank: a;,as,...,a,.
« Songsi and j are inverted if ¢ < j, buta; > a;.

3
you 1 3 4

Brute force: check all ©(n?) pairs.

Counting inversions: divide-and-conquer

» Divide: separate list into two halves A and B.

» Conquer: recursively count inversions in each list.
« Combine: count inversions (a, b) witha € A,b € B.

« Return sum of three counts.

S 4 8 10 2 6 9 3 7
5 4 8 10
6 9 3 7

Output. 1 +3 + 13 = 17.

i

Counting inversions: how to combine?

Q. How to count inversions (a,b) witha € A,b € B?
A. Easyif A and B are sorted!

Warmup algorithm.

1. Sort A and B Elements invened
2. For each element b; € B: gy sl
1. binary search arg min;{b; < a;},) ,w;-,-,f‘u. 2
Merged reslt {
by B

/7 10 18 3 14 20 23 2 11 16

3 7 10 14 18
2 11 16 20 23

Output. 5+2+4+14+0+4+0=8.

i

Counting inversions: merge-and-count

Count inversions (a,b) witha € A,b € B, assuming A and B are sorted.

Scan A and B from left to right:

« Compare a; and b;.
» If a; < bj, then a; is not inverted with any element left in B.
= If a; > b;, then b, is inverted with every element left in A.

« Append smaller element to sorted list C'.

/7 10 18 3 14 20 23 2 11 16
3 7 10 14 18
a; 18
2 11 16 20 23
5 2 b; 20 23
2 3 7 10 M

i

Counting inversions: algorithm

Input. List L.
Output. Number of inversions in L and L in sorted order.

1. IF (list L has one element) RETURN (0, L);
2. Divide the list into two halves A and B;

3. (ra, A) = SORT-AND-COUNT(A): T'(n/2);

4. (rg, B) = SORT-AND-COUNT(B): T'(n/2);

5. (rap, L) = MERGE-AND-COUNT(A, B): O(n);
6. RETURN (r4 +rg + rap, L),

i

Counting inversions: analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a
permutation of size n in O(n log n) time.
Pf. The worst-case running time T'(n) satisfies the recurrence:

(@) if n=1
T(”)‘{ T(|n/2]) + T([n/2]) + O(n) if n>1

Randomized quicksort

i

3-way partitioning
Goal. Given an array A and pivot element p, partition array so that:

« Smaller elements in left sub-array L.
« Equal elements in middle sub-array M.
« Larger elements in right sub-array R.

/7 6 12 3 11 8 9 1 4 10 2

L 6 R
3 1 4 26 7 12 11 8 9 10

i

3-way partitioning
Goal. Given an array A and pivot element p, partition array so that:

« Smaller elements in left sub-array L.
« Equal elements in middle sub-array M .
« Larger elements in right sub-array R.

/7 6 12 3 11 8 9 1 4 10 2

L 6 R
3 1 4 26 7 12 11 8 9 10

Challenge. O(n) time and O(1) space.

i

Demo: 3-way partitioning

Randomized quicksort: idea

» Pick a random pivot element p € A.
« 3-way partition the array into L, M, and R.
« Recursively sort both L and R.

7 6 12 3 11 8 9 1 4 10 2

partition 3 1 4 2 712 11 8 9 10

sort L 1T 2 3 4

sort R /7 8 9 10 11 12

D H| DD

sorted 1 2 3 4 /8 9 10 11 12

i

Randomized quicksort: algorithm

Input. List A.
Output. A in sorted order.

1. IF (list A has zero or one element) RETURN;
2. Pick pivot p € A uniformly at random;

3. (L,M,R) = PARTITION-3-WAY(A, p): O(n),
4. RANDOMI ZED-QUICKSORT(L): T(i);

5. RANDOMI ZED-QUICKSORT(R): T'(n — i — 1);

i

Demo: Randomized quicksort

i

Randomized quicksort: analysis

Proposition. The expected number of compares to quicksort an array of n distinct
elementsa) <ay <...<a,is0(nlogn).

Pf. Consider BST representation of pivot elements.

 a; and a; are compared once iff one is an ancestor of the other.
= a3 and ag are compared (when ag is pivot)

= a9 and ag are not compared (because as partitions them)

first pivor
(chosen uniformly al random)

first pvot in
left subarray

S

1
-
F
L
— s
| i

i

Quiz: Quicksort 1

Given an array of n > 8 distinct elements a; < a» < ... < a,, what is the probability
that a; and ag are compared during randomized quicksort?

A0
B.1/n
C.2/n
D.1

first pivol
(chosen unitormly at random)

first pivot in
left subarray

i

Quiz: Quicksort 1

Given an array of n > 8 distinct elements a; < a» < ... < a,, what is the probability
that a; and ag are compared during randomized quicksort?

A0
B.1/n
C.2/n
D.1

first pivol
(chosen unitormly at random)

first pivot in
left subarray

i

D: ancestry

i

Quiz: Quicksort 2

Given an array of n > 2 distinct elements a; < a» < ... < a,, what is the probability
that a; and a, are compared during randomized quicksort?

A0
B.1/n
C.2/n
D.1

first pivol
(chosen unitormly at random)

first pivot in
left subarray

i

Quiz: Quicksort 2

Given an array of n > 2 distinct elements a; < a» < ... < a,, what is the probability
that a; and a, are compared during randomized quicksort?

A0
B.1/n
C.2/n
D.1

first pivol
(chosen unitormly at random)

first pivot in
left subarray

i

C: compared iff either is chosen as pivot before any of the other

i

Randomized quicksort: analysis (cont. 1)

Proposition. The expected number of compares to quicksort an array of n distinct
elementsa) <ay <...<a,is0(nlogn).

Pf. Consider BST representation of pivot elements.

 a; and a; are compared once iff one is an ancestor of the other.
* Pr[a; and a; are compared | =2/(j — i + 1), where i < j.
» Prlas and ag compared] = 2/7 compared if either as or ag is chosen as pivot
before any of {as, a4, as, as, a7}

i

Randomized quicksort: analysis (cont. 2)

Proposition. The expected number of compares to quicksort an array of n distinct
elementsa) <ay <...<a,is0(nlogn).
Pf. Consider BST representation of pivot elements.

 a; and a; are compared once iff one is an ancestor of the other.
* Pr[a; and a; are compared | =2/(j —i + 1), where i < j.

Expected number of compares:

223—14-1

=1 j=i+1 y=1

I ﬂ

25>
2%

(harmonic) < 2n(lnn + 1)

i

Randomized quicksort: analysis (cont. 2)

Proposition. The expected number of compares to quicksort an array of n distinct
elementsa) <ay <...<a,is0(nlogn).
Pf. Consider BST representation of pivot elements.

 a; and a; are compared once iff one is an ancestor of the other.
* Pr[a; and a; are compared | =2/(j —i + 1), where i < j.

Expected number of compares:

223—14-1

=1 j=i+1 y=1

I ﬂ

25>
2%

(harmonic) < 2n(lnn + 1)

i

Remark. Number of compares only decreases on equal elements.

Closest pair of points

Closest Pair Problem

Closest Pair Problem. Given n points in the plane, find a pair of points with the
smallest Euclidean distance between them.

i

Closest Pair Problem

Closest Pair Problem. Given n points in the plane, find a pair of points with the
smallest Euclidean distance between them.

Fundamental geometric primitive.

« (araphics, computer vision, geographic information systems, molecular modeling,
air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

i

Closest Pair Problem

Closest Pair Problem. Given n points in the plane, find a pair of points with the
smallest Euclidean distance between them.

Fundamental geometric primitive.

» (araphics, computer vision, geographic information systems, molecular modeling,
air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs with (nA2) distance calculations.

« 1D version. Easy O(nlogn) algorithm if points are on a line.
 Non-degeneracy assumption. No two points have the same z-coordinate.

Closest Pair: first attempt

Sorting solution.

« Sort by z-coordinate and consider nearby points.
« Sort by y-coordinate and consider nearby points.

Closest Pair: second attempt

Divide. Subdivide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair: divide-and-conquer

« Divide: draw vertical line L so that n/2 points on each side.
» Conquer: find closest pair in each side recursively.
« Combine: find closest pair with one point in each side.
= looks like ©(n?)?
» Return best of 3 solutions.

E
.
"
m ®
“\"‘v
e

Closest pair: one point in each side?

Find closest pair with one point in each side, assuming that distance < 4.

Observation: suffices to consider only those points within é of line L.

&= mnd 12 21

Closest pair: one point in each side? (cont.)

Find closest pair with one point in each side, assuming that distance < 4.

Observation: suffices to consider only those points within é of line L.

« Sort points in 2 d-strip by their y-coordinate.
» Check distances of only those points within 7 positions in sorted list!
« But, why?

| &=min(1221)

- - & &

i

Closest pair: one point in each side

Def. Let s; be the point in the 2 §-strip, with the " smallest y-coordinate.

Claim. If |j—i| > 7, then the distance between s; and s; is at least 4.
Pf.

Consider the 24-by-é rectangle R in strip whose min y-coordinate is y-coordinate of

8.

 Distance between s; and any point s;
outside Ris > 4.
« Subdivide R into 8 squares. ,
= At most 1 point per square. 8 .
o otherwise, § * /2/2 < 4. tiseaP
= Al most 7 other points can be in R. ;

i

Closest pair: algorithm

Input. n points P = p1,p2,...,Pn.
Output. distance 4.

1. Compute vertical line L such that half the points are on each side of the line:
O(n);

2. §) = CLOSEST-pPAIR(points in left half): T'(n/2);

3. §; = CLOSEST-PAIR(points in right half): T'(n/2);

4. § = min{dy, b2},

5. Delete all points further than 6 from line L: O(n),

6. Sort remaining points by y-coordinate: O(nlogn);

7. Scan points in y-order and compare distance between each point and next 7
neighbors. If any of these distances is less than 4, update 9.

8. RETURN 4.

i

Quiz: Closest pair

What is the solution to the following recurrence?

B E‘}(l} i n=1
Tln)= { T(|n/2]) + T([n/2]) + O(nlogn) if n>1

i

Quiz: Closest pair

What is the solution to the following recurrence?

B E‘}(l} i n=1
Tln)= { T(|n/2]) + T([n/2]) + O(nlogn) if n>1

Closest pair: Refined algorithm

Q. How to improve to O(n logn) ?
A. Don't sort points in strip from scraich each time.

« Each recursive call returns two lists: all points sorted by z-coordinate, and all
points soried by y-coordinate.
« Sort by merging two pre-sorted lists.

i

Closest pair: Refined algorithm

Q. How to improve to O(n logn) ?
A. Don't sort points in strip from scraich each time.

« Each recursive call returns two lists: all points sorted by z-coordinate, and all
points soried by y-coordinate.
« Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding a closest pair
of points in the plane can be implemented in O(n logn) time.
Pf.

[e f n=1
T(”]—{ T(|n/2]) + T([n/2]) + O(n) if n>1

Closest pair: Computational complexity

Theorem. [Ben-Or 1983, Yao 1989] In quadratic decision tree model, any algorithm
for closest pair (even in 1D) requires (n log n) quadratic tests.

Theorem. [Rabin 1976] There exists an algorithm to find the closest pair of points in
the plane whose expected running time is O(n).

i

Digression: computational geometry

Ingenious divide-and-conqguer algorithms for core geometric problems.

problem brute clever
closest pair O(n*) O(nlogn)
farthest pair O(n*) O(nlogn)

{

convex hull O(n*) O(nlogn)

Delaunay/Voronoi O(n*) O(nlogn)
(

Euclidean MST O(n*®) O(nlogn)

