Algorithm Il

4. Greedy Algorithms |

WU Xiaokun 2885

xkun.wu [at] gmail

i

Greedy idea

Greedy decision: builds up a solution in small steps, choosing a decision at each
step myopically to optimize some underlying criterion.

» different measure leads to different solution.

i

Greedy idea

Greedy decision: builds up a solution in small steps, choosing a decision at each
step myopically 1o optimize some underlying criterion.

» different measure leads to different solution.

It's easy to invent greedy algorithms for almost any problem;

« finding cases in which they work well, and proving that they actually work well, is
the interesting challenge.

Coin changing

i

Coin changing problem

Goal. Given U.S. currency denominations {1, 5, 10, 25, 100}, devise a method to pay

amount to customer using fewest coins.
2= T)
iz S | “'__-. :IL i Ty ﬂﬂ-
® 279% ® gooe

dollars guarters dimes nickels pennies
(1004) (251) (104) (34) (1¢)

i

Coin changing problem

Goal. Given U.S. currency denominations {1, 5, 10, 25, 100}, devise a method to pay
amount to customer using fewest coins.

ATEE
ii :"‘:,
LR =
dollars dirmes nickels
(100¢) (104) (5¢)

Coin Changing Problem. Given a set C' = {¢,, .., ¢, } of natural numbers and a
target value S, find n multipliers M = {mi,..,m,} suchthat >, , . mzcp = S.

i

Be a good cashier

Customer usually does not like handsful small changes.

"o/

nickels
i5€)

dollars

(100¢)

Ex. $2.89

e 2x1004+3 x20+1x10+4x1
e 280 x 1

= customer probably complains to the manager.

666
L LY

pennies
(14}

i

Be a good cashier

Customer usually does not like handsful small changes.

(3 Eﬂ D &
L5 S
dollars l irmes nickels
(1002) [104) (54)

Ex. $2.89

e 2x1004+3 x20+1x10+4x1
e 280 x 1

= customer probably complains to the manager.

606
PODS

pEnmies
(1)

Cashier’s algorithm. At each iteration, add coin of largest value that does not take

us past the amount to be paid.

i

Cashier’s algorithm

1. SORT n denominations: 0 < ¢; < ¢y < ... < ¢p;
2.SETmi=me=...=m, =0;
3. WHILE (0 < S):
1. k = largest denomination ¢ such that ¢;. < S,
2. IF (no such k):
1. RETURN “no solution™:
3. ELoE:
1.5 =i¢y;
2. ++mjy.,
4. RETURN M

i

Quiz: Cashier’s algorithm

IS cashier’s algorithm optimal?

« Yes, greedy algorithms are always optimal.

 Yes, for any set of coin denominations ¢; < ¢y < ... < ¢, provided ¢; = 1.
» Yes, because of special properties of U.S. coin denominations.

* No.

i

Quiz: Cashier’s algorithm

IS cashier’s algorithm optimal?

« Yes, greedy algorithms are always optimal.
 Yes, for any set of coin denominations ¢; < ¢y < ... < ¢, provided ¢; = 1.

» Yes, because of special properties of U.S. coin denominations.
* No.

No. See below.

i

Arbitrary coin denominations
Q. Is cashier’s algorithm optimal for any set of denominations?
A. No. Consider U.S. postage: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

e Cashier's algorithm: 140 =100 +34+1+1+14+ 141+ 1.
e Optimal: 140 = 70 4+ 70.

i

Arbitrary coin denominations
Q. Is cashier’s algorithm optimal for any set of denominations?
A. No. Consider U.S. postage: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

e Cashier's algorithm: 140 =100 +34+1+1+14+ 141+ 1.
e Optimal: 140 = 70 4+ 70.

A. No. It may not even lead to a feasible solution ife; > 1: 7,8, 9.

« Cashier’s algorithm: 15 = 9+7.
e Optimal: 15 = 7 + 8.

Properties of optimal solution

Property. Number of pennies < 4.
Pf. Replace 5 pennies with 1 nickel.

Property. Number of nickels < 1.
Property. Number of quarters < 3.

Property. Number of nickels + number of dimes < 2.
Pf.

» Recall: < 1 nickel.

« Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel,
» Replace 2 dimes and 1 nickel with 1 quarter.

1]

dollars
(1004¢)

nickels
(5€)

pennies
(12}

i

Optimality of cashier’s algorithm

Theorem. Cashier’s algorithm is optimal for U.S. coins {1, 5, 10, 25, 100}.
Pf. [by induction on amount to be paid S]

« Consider optimal way to change ¢;, < S < ¢, greedy takes coin k.

« We claim that any optimal solution must take coin k.
= if not, it needs enough coins of type ¢;,...,¢.toaddupto S
« table below indicates no optimal solution can do this

« Problem reduces to coin-changing S—¢;. cents, which, by induction, is optimally
solved by cashier’s algorithm.

all aptimal solutions 1
must satisfy €Ly E3n aeey Ci=y N ANY opltimal solution

i

Interval scheduling

i

Interval scheduling problem
Consider n subjects are sharing a single resource.

 lecture room, supercomputer, electron microscope, etc.

b

po

i

Interval scheduling problem

Consider n subjects are sharing a single resource.

 lecture room, supercomputer, electron microscope, etc.

bk
—

A set of n Jobs:

« job j: start at s; and finish at f;
« two jobs are compatible if they do not overlap

Interval Scheduling Problem. Find maximum subset of mutually compatible jobs.

i

Quiz: Interval scheduling

Which rule is optimal?

Earliest start time] Consider jobs in ascending order of s;.

Shortest interval] Consider jobs in ascending order of f;-s;.

Earliest finish time] Consider jobs in ascending order of f;.

Fewest incompatible] Pick the one has fewest number of incompatible requests.
None of the above.

i

Quiz: Interval scheduling (cont.)

Different rule leads to different greedy algorithm.

—_—l — }

(a)

(b}

(c)

i

Quiz: Interval scheduling (cont.)

Different rule leads to different greedy algorithm.

—_—l — }

(a)

(b}
1 | |
—
f— [e |
_— ey

(c)

Claim. The earliest-finish-time-first algorithm is optimal.

Earliest-finish-time-first algorithm

1. SORT jobs by finish times and renumber sothat f; < fo < ... < f,.
2.5 =0,
3-FOR 7 =1.0n
1. IF (job j is compatible with S):
1.8=8U{j};
4. RETURN S

i

Earliest-finish-time-first algorithm

1. SORT jobs by finish times and renumber sothat f; < fo < ... < f,.
2.5 =0,
3-FOR 7 =1.0n
1. IF (job j is compatible with S):
1.8=8U{j};
4. RETURN S,

Proposition. Can implement earliest-finish-time-first in O(n logn) time.
Pf.

« Keep track of job j* that was added lastto S.
= Job j is compatible with S iff s; > f;-: O(1) time.
« Sorting by finish times takes O(n log n) time.

i

Earliest-finish-time-first: example

Intervals numbered in order

Selecting interval 1

Selecting interval 3

selecting interval 5

Selecting interval 8

1::'I:l ﬂ]
1 3 5 9
2 4
8
et 4 —
i e e,
e e i
8
| 3 5 9
— —— |—|?p—|
F---4 P
3 : 9
bommm——==]
a
—_—
T Ty S TR

i

Earliest-finish-time-first: Demo

Ed

Optimality I: “stay ahead”
Remember: greedy rules do not always lead to optimal solution.

« when it does, typically reveal certain interesting structure of the problem.

i

Optimality I: “stay ahead”
Remember: greedy rules do not always lead to optimal solution.

« when it does, typically reveal certain interesting structure of the problem.

Stay ahead: greedy algorithm is doing better in each step.

« attain local optimal under greedy criterion

i

Optimality I: “stay ahead”
Remember: greedy rules do not always lead to optimal solution.

« when it does, typically reveal certain interesting structure of the problem.

Stay ahead: greedy algorithm is doing better in each step.

« attain local optimal under greedy criterion

Claim. Earliest-finish-time-first is doing better in each step.

e Let A = {iy,..,i;} be jobs selected by greedy
e Let O = {j;,..,7.n} De jobs selected optimal
e Show |A| =k =m = |0

i

Earliest-finish-time-first: optimality
Observation. Greedy rule guarantees that f(i;) < f(j1).

Lemma. For all indices r < k we have f(i,) < f(j,).
Pf. observed true for r = 1,

now suppose true for r — 1: f(ir-1) < f(jr-1)

« compatibility of O: f(jr—1) < s(jr)
o f[ir—lj E S(j!"}
= 4. IS a valid choice, when greedy selects i,
o f(i,) < f(Jj-) due to greedy rule

- i 2

——
=3

Earliest-finish-time-first: optimality (cont.)
Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. otherwise m > k.

f(ix) < f(jx) by lemma

e 1.1 € O: starts after j;
= f(ix) < f(k) < s(Gks1)

= algorithm stopped while there is a valid candidate, contradiction.

i

Quiz: Weighted Interval Scheduling

Suppose that each job also has a positive weight and the goal is to find a maximum
weight subset of mutually compatible intervals. Is earliest-finish-time-first algorithm
still optimal?

» Yes, because greedy algorithms are always optimal.

» Yes, because the same proof of correctness is valid.

« No, because the same proof of correctness is no longer valid.

« No, because you could assign a huge weight to a job that overlaps the job with
earliest finish time.

i

Quiz: Weighted Interval Scheduling

Suppose that each job also has a positive weight and the goal is to find a maximum

weight subset of mutually compatible intervals. Is earliest-finish-time-first algorithm
still optimal?

» Yes, because greedy algorithms are always optimal.
» Yes, because the same proof of correctness is valid.

« No, because the same proof of correctness is no longer valid.

« No, because you could assign a huge weight to a job that overlaps the job with
earliest finish time.

Weighted Interval Scheduling will be solved by Dynamic Programming optimally.

Interval Partitioning

i

Interval Partitioning Problem
Consider n subjects are sharing identical resources.

e resources are plenty now, but do not waste

Goal: find minimum number of resources so that no incompatibility for each
resource.

fa)

L]

i

Quiz: Interval Partitioning

Which rule is optimal?

Earliest start time] Consider jobs in ascending order of s;.

Shortest interval] Consider jobs in ascending order of f;-s;.

Earliest finish time] Consider jobs in ascending order of f;.

Fewest incompatible] Pick the one has fewest number of incompatible requests.
None of the above.

i

Depth of intervals
Depth. Maximum number that pass over any single point on the time-line.

Claim. In any instance of Interval Partitioning, the number of resources needed is at
least the depth of intervals set.

i

Depth of intervals

Depth. Maximum number that pass over any single point on the time-line.

Claim. In any instance of Interval Partitioning, the number of resources needed is at
least the depth of intervals set.

Key Observation. If an algorithm always produce a schedule using resources equal
to the depth, then it must be optimal.

« Number of resources needed > depth.

Pf. Optimality: “characteristic bound”

“Characteristic bound”: greedy algorithm always attain a certain characteristic
value.

« if the value bounds every possible optimal solution, greedy must be optimal.
« Key: find the characteristic value of the problem.

i

Pf. Optimality: “characteristic bound”

“Characteristic bound”: greedy algorithm always attain a certain characteristic
value.

« if the value bounds every possible optimal solution, greedy must be optimal.
« Key: find the characteristic value of the problem.

Claim. Earliest-start-time-first algorithm uses a number of resources equalto the
depth of intervals.

« let D be the depth, d the current allocations
smsod<D

i

Earliest-start-time-first algorithm

1. SORT requests by start times and renumber so that s; < s, < ...

2.d=0);
3-FOR 7 =1.0n
1. IF (request j is compatible with resource k):
1. schedule request 5 with resource k;
2. ELSE:;
1. ++d;
2. schedule request 5 with resource d,;
4. RETURN schedule;

i

Earliest-start-time-first: Demo

i

Earliest-start-time-first: analysis

Proposition. The earliest-start-time-first algorithm can be implemented in O(nlog n)
time.

Pf.

» Sorting by start times takes O(n log n) time.

« Store resourcesin a priority queue (key = finish time of its last requesi).
= {0 allocate a new resource, INSERT resource onto priority queue.

» t0 schedule request j in resource k, INCREASE-KEY of resource k to f_,-,

= {0 determine whether request j is compatible with any resource, compare s;
to FIND-MIN

« Total # of priority queue operations is O(n); each takes O(log n) time.

Remark. This implementation chooses a resource k whose finish time of its last
request is the earliest.

» already sorted by start time

i

Earliest-start-time-first: optimality

Observation. ESTF never schedules two incompatible requests with same resource;
every request will be fulfilled (by new allocation).

Theorem. Earliest-start-time-first algorithm is optimal.
Pf.

« When algorithm terminates, d resources are allocated in total.
= Resource d is allocated because we needed to schedule a request, say 7,
that is incompatible with a request in each of d-1 other resources.
» Thus, these d requests each end after s;.

« Since we sorted by start time, each of these incompatible requests start no
later than s;.

= Thus, we have d requests overlapping at time s; + €.
o By definition of depth, d < D
« Key observation = all schedules use > D resources.

i

Minimize Lateness

i

Scheduling to minimize lateness
Consider n subjects are sharing a single resources.

* job j requires ¢; unit time and due at d;
= determine start time s;, so finish at f; = s; + t;
e Lateness:/; = max{0, f; — d;}

Goal: minimize the maximum lateness: L. — max. !

i i

Length 1 Deadline 2
fob 1 | | i

Length 2 Deadline 4
Job 2 | | |

]1-1|HI|'| 5 Drexdline G
Job 3 [| |

Solution: | | | |
Job 1: Job 2 Job 3

done at done a1 done at
time | time | +2=3 time | +2+3=5

i

Quiz: Minimize Lateness

Which order minimizes the maximum lateness?

» [shortest processing time] Ascending order of processing time ¢;.
« [smallest slack] Ascending order of slack: d;—t;.

« [earliest deadline first] Ascending order of deadline d,;.

» None of the above.

i

Quiz: Minimize Lateness

Which order minimizes the maximum lateness?

» [shortest processing time] Ascending order of processing time ¢;.
« [smallest slack] Ascending order of slack: d;—t;.

« [earliest deadline first] Ascending order of deadline d,;.

» None of the above.

shortest processing time

” tl — lid] = 100

e to = 10,d2 = 10: optimal
smallest slack

b fiz —_— lﬂ,dg — 1[}
ety =1,d; = 2: best

i

length is not even related?

i

Earliest-deadline-first: algorithm

1. SORT jobs by due times and renumber so that d; < 1020345 6]

dy <...<dp; - AR T
2. =1k Ml s s 9 9 14 15
3-FOR 7 = l..n:

1. Assign job j to interval [t,t + t,];
2..5“]; =15 fj :t‘|"f-j;
3. t=t+t;;
4. RETURN intervals [sy, fi], [s2, fols - .+, [8n,s ful:

max lateness [.= |

}

d,=6 d=8 dy=9 d,=9 ds=14 dy=15

U | 2 3 4 3 L] 7 8 g g I |2 | 3 4 I'5

Minimize Lateness: no idle time

Observation 1 Earliest-deadline-first has no “gap”.

 each interval starts just when the previous ends.

i

Minimize Lateness: no idle time
Observation 1 Earliest-deadline-first has no “gap”.

« each interval starts just when the previous ends.

Idle time: there is work to be done, yet machine is sitting idle.

Observation 2. There exists an optimal schedule with no idle time.

 given an optimal schedule, just move each interval earlier to squeeze out gaps.

an optimal schedule d=4 d==6 d=12
| ¥ 3 i 5 6 7 8 q 10 11

an optimal schedule d=4 d=6 d=132
with no idle time 7 i

»
F. 3 & 5 6 ! 8 9 10 11

Optimality ll: exchange argument

Note: no-idle-time is a common property shared by greedy and optimal.

Optimality IlI: exchange argument
Note: no-idle-time is a common property shared by greedy and optimal.

Exchange argument: given an optimal O, gradually modify it

» preserving optimality at each step
« eventually transforming it into a solution identical to greedy

Optimality IlI: exchange argument
Note: no-idle-time is a common property shared by greedy and optimal.

Exchange argument: given an optimal O, gradually modify it

« preserving optimality at each step
« eventually transforming it into a solution identical to greedy

Def. Given a schedule S, an inversion is a pair of jobs 7 and j such that: d; < d; but
7 is scheduled before z.

Observation 3 Earliest-deadline-first has no inversion (and no idle time).

Exchange argument: properties to keep

Claim. All schedules with no inversions and no idle time have the same maximum
lateness.

Pf.

« only differ in the order of jobs with identical deadlines.
= they are scheduled consecutively

« excluding these jobs, the order Is fixed (no inversion) and compact (no idle time)

i

Exchange argument: properties to keep

Claim. All schedules with no inversions and no idle time have the same maximum
lateness.
Pf.

« only differ in the order of jobs with identical deadlines.
» they are scheduled consecutively

« excluding these jobs, the order Is fixed (no inversion) and compact (no idle time)

Key to show optimality: there is an optimal schedule that has no inversions and no
idle time.

« start with any optimal schedule with no idle time
 convert it into schedule with no inversion, without increasing maximum lateness

i

Optimality: adjacent inversion

Observation 4. If an idle-free schedule has an inversion, then it has an adjacent
inversion (scheduled consecutively).

Pf. Let i—j be the closest inversion.

Let k be element immediately to the right of ;.

* [j > k| Then j—k is an adjacent inversion.
e |j < k| Then i-k is a closer inversion since i < ... < j < k, contradiction.

{ii .. dj dj;
K j w1
ik .

i

Optimality: swap

Lemma. Exchanging two adjacent, inverted jobs 7 and ;7 reduces the number of
inversions by 1 and does not increase max lateness.
Pf. Let [be the lateness before swap, and let I’ be it afterwards.

o Ut = li forall k # i, 5.
« Uy <

sitilslate:ly =, ~di=F; — d
= ; — jlisinversion:d; > d;
2l =fi—d; < fj—d; =1

\ w di . d

beforeswap .. | .. i
after swap W S

Earliest-deadline-first: optimality

Theorem. The earliest-deadline-first schedule is optimal.
Pf.

« an optimal schedule with no inversions and no idle time exists
= all schedules with no inversions and no idle time have same maximum
lateness
» earliest-deadline-first always produces such schedule

i

Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of greedy algorithm, its
solution is at least as good as any other algorithm’s.

Characteristic bound. Discover a simple characteristic bound asserting that every
possible solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument. Gradually transform any solution to the one found by greedy
algorithm without hurting its quality.

i

Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of greedy algorithm, its
solution is at least as good as any other algorithm’s.

Characteristic bound. Discover a simple characteristic bound asserting that every
possible solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument. Gradually transform any solution to the one found by greedy
algorithm without hurting its quality.

Other greedy algorithms. Gale—Shapley, Kruskal, Prim, Dijkstra, Huffman, etc.

Interested in solving problem?

LeetCode: hitps://leetcode.com

Optimal Caching

i

Caching
Caching.

« Cache with capacity to store k items.
e Sequence of m item requests dy, ds, . .., d.
« Cache hit: item in cache when requested.
» Cache miss: item not in cache when requested.
= must evict some item from cache and bring requested item into cache

Applications. CPU, RAM, hard drive, web, browser, efc.

Cache maintenance

Goal. Eviction schedule that minimizes the number of evictions.
Ex. k = 2, initial cache = ab, requests: a, b, ¢, b, ¢, a, b.

« Optimal eviction schedule: 2 evictions.

O |
oo
oe o
=g Nl N =z
o016
oW
oo

Cache maintenance: greedy options
LIFO/FIFO. Evict item brought in least (most) recently.

LRU. Evict item whose most recent access was earliest.

LFU. Evict item that was least frequently requested.

i

Farthest-in-future

Farthest-in-future. Evict item in the cache that is not requested until farthest in the
future.

Theorem. [Belady 1966] FF is optimal eviction schedule.

 as usual, design is simple but analysis is subtle

FF: 2 evictions

a bcdadeadboec
d a a aaaaaa a a
b bbb bb e e e e e
c ccdddddddd

Farthest-in-future: example

FF: 2 evictions

a bc dadeadboec

d d 4d d 4d d 4 4 4 a 4

b b b bbb e e e e e

c ccdddddddd

example

Farthest-in-future

FF: 2 evictions

a bc dadeadboec

d d 4d d 4d d 4 4 4 a 4

b b b bbb e e e e e

c ccdddddddd

Note: other options may be just as good.

a bcdadeadbec

d 4d 4d 4a 4d 4 a4a a a a 4a

b bbdddddddd

c ¢ ¢ C € C & € € € ¢

So why FF is optimal?

Exchange argument: intuition

Observation. Swapping one decision for another does not change cost.

« the other decision will be taken anyway

i

Exchange argument: intuition

Observation. Swapping one decision for another does not change cost.

« the other decision will be taken anyway

Def. A reduced schedule does minimal amount of work necessary in a given step.

« only bring d into cache if there is a request to d, and d is missing
= exactly the number of misses
« sometimes also called “lazy” strategy

i

Exchange argument: intuition

Observation. Swapping one decision for another does not change cost.

« the other decision will be taken anyway

Def. A reduced schedule does minimal amount of work necessary in a given step.

« only bring d into cache if there is a request to d, and d is missing
= exactly the number of misses
« sometimes also called “lazy” strategy

Note: FF is clearly reduced

« Key: prove for every non-reduced schedule, there is an equally good reduced
schedule

i

Reduced schedule

Claim. Given any unreduced schedule S, can transform it into a reduced schedule S’
with no more evictions.

Pf. [induction on step j] case-by-case discussion:

« Case 1: .S bring in d without a request
« Case 2: 5 bring in d even thought d is in cache
« if multiple happens, apply each in turn
= Case 1 should applied first, which may trigger Case 2

Or just “pretends” to cache but actually leaves d out

e only bring in d when requested.

i

Optimality of FF

Note: for any reduced schedule, the number of items that are brought in is exactly
the number of misses.

Let Sgr denote schedule produced by Farthest-in-Future,
Let S* denote a schedule that incurs minimum possible number of misses

« now gradually “transform” schedule S* into Sgr, one eviction decision at a time
« without increasing number of misses.

i

Optimality of FF

Note: for any reduced schedule, the number of items that are brought in is exactly
the number of misses.

Let Sgr denote schedule produced by Farthest-in-Future,
Let S* denote a schedule that incurs minimum possible number of misses

« now gradually “transform” schedule S* into Sgr, one eviction decision at a time
« without increasing number of misses.

Theorem. FF is optimal eviction algorithm, since it incurs no more misses than any
other schedule.

Lemma. If Spp and S make same eviction decision through first j steps, then there
is a reduced schedule S’ that make same eviction decision as S through first 7 + 1
steps, and incurs no more misses than S.

i

Proving Optimality of FF

Srr and S have same cache contents.
Let d denote the item requested in step 5 + 1.

edincache: 8" =S
e« Spp and S evict same item: S’ = S
« Sppevicte, S evict f # e
= S’ should evict e, but sync with S ASAP
o §' agrees with Sgp through first 7 + 1 steps
o show having f is no worse than having e

= from step j + 2 onward, S’ behaves exactly like S, until ...

S steps S’

same e f stepj same e f

same e d stepj+1 same d f

i

Proving Optimality of FF (cont.)
... until following happens for the first time:

» A. request to g(+ e, f) notin cache, and S evict e
« S’ evict f
« request to f, and S evict €'
» B.if ¢ = e: no change
= C. otherwise: S’ evict €' and take e
> S’ may not reduced: transform it to a reduction
» request to e: impossible
= Spp evict e in step j + 1, request to f must come earlier

S steps S’
same e d stepj+1 same d f
same g d stepA same d g
same f d stepB same d f
same e d slepC same d e

Cache maintenance: extensions

Problem of FF: in practice, generally impossible to know future request order.

« often used as baseline for offline comparisons
» Experimentally, Least-Recently-Used (LRU) is the best
« Caching is among most fundamental online problems in CS.

