Algorithm I

3. Graphs

WU Xiaokun 2885

xkun.wu [at] gmail

Graphs in Discrete Math
Computer deals with discrete mathematics.

 core subject: combinatorial structures
« graphs: fundamental, expressive

i

Content

« Basic Definitions

« Graph Connectivity and Graph Traversal
» Testing Bipartiteness

« Connectivity in Directed Graphs

* DAGSs and Topological Ordering

Basic Definitions

i

Undirected graphs
Notation. G = (V, E)

» V. nodes (or vertices).

« E': edges (or arcs) between pairs of nodes.

» Captures pairwise relationship between objects.
« Graph size parameters: n = |V|,m = |E|.

V =4{1,2,3,4,5,6,7,8}

E =

{1-2,1-3,2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6,
m=11,n=28

i

Examples of Graphs

graph node edge
communication telephone, computer fiber optic cable
circuit gate, register, processor wire
mechanical joint rod, beam, spring
financial stock, currency transactions
transportation street intersection, airport highway, airway route
internet network hub connection
game board position legal move
social relationship person, actor friendship, movie cast
neural network neuron synapse
protein network protein protein-protein interaction
molecule atom bond

i

Graph representation: adjacency matrix
Adjacency matrix. n-by-n matrix with A,,, = 1 if (u, v) is an edge.

o Symmetry: two representations of each edge.
« Space proportional to n?.

« Check if (u, v) is an edge: ©(1) time.

« Identify all edges: ©(n?) time.

OO QOO
Q00O EEO N
ik e O ek O O = | I
OO0 KOO KO M
CORREROKMEMKREEOlWwm
OC OO MHOOOO M
=00 Q0O O~
OO OO K-HOO|

oYU B W

i

Graph representation: adjacency lists
Adjacency lists. Node-indexed array of lists.

e Symmetry: two representations of each edge.
e Space is O(m + n).

» Check if (u,v) is an edge: O(degree(u)) time.
« Identify all edges: ©(m + n) time.

s
|13 =—> I—ri.
3 2(e=—1 o&—5 +—a7 i—hE.
NACY G
P23 | e—ai 4 H?.
, 5
! ii——l-ﬂ.
. Bl

Graph representation: space requirement

Degree n, of a node v: the number of incident edges it has.

Sum of the degrees. » |, n, = 2m.
Pf. Each edge e = (v, w) contributes exactly twice to this sum.

Graph representation: space requirement

Degree n, of a node v: the number of incident edges it has.

Sum of the degrees. » |, n, = 2m.
Pf. Each edge e = (v, w) contributes exactly twice to this sum.

Theorem. Adjacency matrix representation of a graph requires O(n*) space;
Adjacency list representation requires only O(m + n) space.

e since m < n?, the bound O(m + n) is never worse than O(n?)
= adjacency list is a natural representation for exploring graphs.

i

Paths and connectivity

Def. A path in an undirected graph G = (V, E) is a sequence of nodes

vy, V2, ..., v; With the propenrty that each consecutive pair v; 1, v; IS joined by a
different edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes uw and v, there is a
path between them.

1 7

i

Cycles

Def. Acycle is a path vy, v2,..., v inwhich vy = v and k > 2.

Def. A cycle is simple if all nodes are distinct (except for v; and wvy).

i

Trees

Def. An undirected graph is a tree if it is connected and contains no cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following
statements imply the third:

» (- is connected.
» (- does not contain a cycle.
» (G has n—1 edges.

i

Rooted trees

Rooted tree. Given a tree T', choose a root node r and orient each edge away from
o

Importance. Models hierarchical structure.

() |

Graph Connectivity and Graph
Traversal

i

Connectivity

s-t connectivity problem. Given two nodes s and ¢, is there a path between them?

s-t shortest path problem. Given two nodes s and ¢, what is the length of a shortest
path between them?

i

Connectivity

s-t connectivity problem. Given two nodes s and ¢, is there a path between them?

s-t shortest path problem. Given two nodes s and ¢, what is the length of a shortest
path between them?

Applications.

« Maze traversal, map navigation, etc.

Breadth-first search (BFS)

BFS intuition. Start at root s and “flood” the graph.

« Explore outward from s in all possible directions,
« Adding nodes one “layer” at a time.

i

Breadth-first search (BFS)

BFS intuition. Start at root s and “flood” the graph. D

» Explore outward from s in all possible directions, e .
» Adding nodes one “layer” at a time.

BFS algorithm.

o Ly: {S}

« L,:all neighbors of Ly.

« L;.,:all nodes that do not belong to any earlier layer, and that have an edge to a
node in L;.

i

Breadth-first search (BFS)

BFS intuition. Start at root s and “flood” the graph.

« Explore outward from s in all possible directions, S L
« Adding nodes one “layer” at a time. P P

BFS algorithm.

o Ly: {S}
« L,:all neighbors of Ly.

« L;.,:all nodes that do not belong to any earlier layer, and that have an edge to a
node in L;.

Theorem. For each ¢ > 1, L; consists of all nodes at distance exactly < from s. There
is a path from s to ¢ iff £ appears in some layer.

« produce a tree with root s

BFS tree

il

i

BFS tree

€h (7
it /
\}ﬁ/ P 1’/
y o ™ x' ‘\'l"
L) L‘;; e
~
)

Note: non-tree edges all either connected nodes in the same layer, or connected

nodes in adjacent layers.

i

BFS tree property

Property. Let T" be a breadth-first search tree, let z and y be nodes in T" belonging

to layers L; and L; respectively, and let (z, y) be an edge of G. Then i and j differ
by at most 1.

Pf.

» consider the moment BFS just examined =
« nodes discovered from x belong to layers L;.1 or earlier

e T

(1) |
/_\/--\’—\ /)‘-xr j\‘“
S fan “'? }"_le
it) '

.H—x :
O U k_,, &) &)

i

BFS: representation

BFS corresponds exactly to queue structure.

 extract elements in first-in, first-out (FIFO) order
« can be implemented via doubly linked list

i

BFS: representation

BFS corresponds exactly to queue structure.

 extract elements in first-in, first-out (FIFO) order
« can be implemented via doubly linked list

Cycle? Array Di=covered of length n

e Sel Discovered[v]= true assoon as our search first sees v.

i

BFS: implementation

Discovered[s] = true; Discovered|[v] = fal se for all other v;
L|0] = {s}, layer counter i = 0; currenttree T' = {}
While L|i] is not empty:

1. Initialize an empty list Lz + 1];
2. For each node u € Li:
1. Consider each edge (u, v) incident to u:
2. f Discovered|V] = false:
1. Set Discovered|V] = true;
2. Add edge (u,v) to the tree T';
3. Add v to the list L|i + 1]
3. +#2;

i

BFS: analysis

Theorem. The above implementation of the BFS algorithm runs in time O(m + n)

(i.e., linear in the input size), if the graph Is given by the adjacency list representation.
Pf.

« [worst case] easy to prove O(n?) time
= at most n lists L|i]
o while loop runs at most n times
= at most n neighbors for each node
o each spend O(1) time

i

BFS: analysis

Theorem. The above implementation of the BFS algorithm runs in time O(m + n)

(i.e., linear in the input size), if the graph Is given by the adjacency list representation.
Pf.

« [worst case] easy to prove O(n?) time
= at most n lists L|i]
o while loop runs at most n times
= at most n neighbors for each node
o each spend O(1) time

« Actually runs in O(m + n) time:
» each node u has degree(u) neighbors
o total time processing edges: O(>_, ., 7, = 2m) = O(m)
= O(n) additional time: set up lists, manage Di scovered.

Depth-First Search (DFS)

DFS intuition: explore a maze.

» Keep going until reached a “dead end”
= backtrack until an unexplored branch

o N

b
sy

r, _{K ‘,f' g
() Hny

i

Depth-First Search (DFS)

DFS intuition: explore a maze.

» Keep going until reached a “dead end”
= backtrack until an unexplored branch

I.--'Hi ':"'_“-.
bl A,
/
F, “\. i
.-'_"E. T
E* 2 :—--f;j]\'
: Pty
NN
(4) & (8

Depth-first search tree: non-tree edges can only connect ancestors to descendants.

i

Depth-first search tree

i

DFS: representation

DFS corresponds exactly to stack structure.

» extract elements in last-in, first-out (LIFO) order
« can be implemented via doubly linked list

i

DFS: representation

DFS corresponds exactly to stack structure.

» extract elements in last-in, first-out (LIFO) order
« can be implemented via doubly linked list

Cycle? Array Di=covered of length n

e Sel Discovered[v]= true assoon as our search first sees v.

Application: connected component

Connected component. Find all nodes reachable from s.

e Initially R = {s}
» While there is an edge (u,v)whereu € Randv ¢ R
= Addvio R

Theorem. Upon termination, R is the connected N
component containing s. containing s

5
u
Q%i R

« BFS: explore in order of distance from s.
 DFS: explore in a recursive way.

[It is safe 10 add v. |

i

i k!
{v)
-_.-"

Testing Bipartiteness

i

Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored blue or
white such that every edge has one white and one blu= end.

SO

« Stable matching: men = b1 us, women = white,
» Scheduling: machines = bl ue, jJObS = white.

Applications.

i

Testing bipartiteness

If the underlying graph is bipartite, many graph problems become:

« Easier (matching).
» Tractable (independent set).

=

Before attempting to design an algorithm, we need to understand structure of
bipartite graphs.

An obstruction to bipartiteness

Clearly a triangle is not bipartite.

An obstruction to bipartiteness

Clearly a triangle is not bipartite.

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.
Pf. Not possible to 2-color the odd-length cycle, let alone G.

@ I N O

i

Bipartiteness: BFS algorithm

Lemma. Let G be a connected graph, and let L, ..., L; be the layers produced by
BFS starting at node s. Exactly one of the following holds:

1. No edge of G joins two nodes of the same layer, and G is bipartite.
2. An edge of G joins two nodes of the same layer, and G contains an odd-length
cycle (and hence is not bipartite).

e

(Proofs in the following slides.)

i

Bipartiteness: BFS algorithm, pf. |

Lemma. Let G be a connected graph, and let L, ..., L; be the layers produced by
BFS starting at node s. Exactly one of the following holds:

1. No edge of G joins two nodes of the same layer, and G is bipartite.

2. An edge of G joins two nodes of the same layer, and G contains an odd-length
cycle (and hence is not bipartite).

Pf. (i)

« Suppose no edge joins two nodes in same layer.

« By BFS property, each edge joins two nodes in
adjacent levels.

« Bipartition: white = nodes on odd levels, b1 e = = L b
nodes on even levels.

i

Bipartiteness: BFS algorithm, pf. Il

Lemma. Let G be a connected graph, and let L, ..., L; be the layers produced by

BFS starting at node s. Exactly one of the following holds:

1. No edge of G joins two nodes of the same layer, and G is bipartite.
2. An edge of G joins two nodes of the same layer, and G contains an odd-length

cycle (and hence is not bipartite).
Pf. (ii)

« Suppose (x,y) is an edge with z, y in same level L;.
« Let z = lea(z, y): lowest common ancestor.
« Let L; be level containing =.

« Consider cycle that takes edge from x to y, then path from y
to z, then path from z to x.

e Itslength is 1 + (j—i) + (j—4), which is odd.

P
5

A

Layer L ﬁ"_'ﬁ'
_— -

The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

Q I ? O
A

Connectivity in Directed Graphs

Directed graphs

Notation. G = (V, E).

» Edge (u, v) leaves node u and enters node v.

i

Directed graphs
Notation. G = (V, E).

» Edge (u, v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.

« Orientation of edges is crucial.
« Modern web search engines exploit hyperlink structure to rank webpages by
importance.

i

Directed graphs

Notation. G = (V, E).

» Edge (u, v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.

« Orientation of edges is crucial.

« Modern web search engines exploit hyperlink structure to rank webpages by
importance.

Ex. Road network

* Node = crossroad,
* edge = one-way street.

i

Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s -~ t shortest path problem. Given two nodes s and ¢, what is the length
of a shortest path between them?

Graph search. BFS extends naturally to directed graphs.

i

Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s -~ t shortest path problem. Given two nodes s and ¢, what is the length
of a shortest path between them?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s: find all web pages linked from s, either directly
or indirectly.

Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from » to v and
also a path from v 10 wu.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

i

Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from » to v and
also a path from v 10 wu.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. & is strongly connected iff every node is reachable from
s, and s is reachable from every node.

Pf. = Follows from definition.

Pl. &

« Path from u to v: concatenate u ~» s path with s ~ v path.
« Path from » to u: concatenate v ~~ s path with s ~~ u path.

Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

» Pick any node s.

= Run BFS from s in G.

« Run BFS from s in G™""™*,

= Return true iff all nodes reached in both BFS executions.
« Correctness follows immediately from previous lemma.

Strong components

Def. A strong component is a maximal subset of mutually reachable nodes.

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

DAGs and Topological Ordering

i

Directed acyclic graphs
Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes
as vy, ve, ..., v, SO that for every edge (v, v;) we have i < j.

i

Precedence constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v;.

Applications.

« Course prerequisite graph: course v; must be taken before v;.
« Compilation: module »; must be compiled before v;.
« Pipeline of computing jobs: output of job v; needed to determine input of job v;.

i

DAG: determinant

Lemma. If G has a topological order, then G is a DAG.
Pf. [by contradiction]

« Suppose that G has a topological order vy, vs,...,v, and that G also has a
directed cycle C'. Let's see what happens.
» Let v; be the lowest-indexed node in C', and let v; be the node just before v;; thus
(v;,v;) is an edge.
= By our choice of 7, we have i < j.
= On the other hand, since (v;, v;) is an edge and vy, vs,...,v, isa
topological order, we must have j < i, a contradiction.

® © @&—C O O 0 ©® 0 ©

i

DAG: head

Lemma. If G is a DAG, then G has a node with no entering edges.
Pf. [by contradiction]

« Suppose that GG is a DAG and every node has at least one entering edge. Let’s
see what happens.

« Pick any node v, and begin following edges backward from v. Since v has at
least one entering edge (u, v) we can walk backward to w.
= Since u has at least one entering edge (z,u), we can walk backward to z.
= Repeat until we visit a node, say w, twice.

» Let C denote the sequence of nodes encountered between successive visits to w
. isacycle.

tj@-@-@@—-@

i

DAG: property

Lemma. If G is a DAG, then G has a topological ordering.
Pf. [by induction on n]

« Base case: frueifn=1.
« (aiven DAG on n > 1 nodes, find a node v with no entering edges.
« G—v is a DAG, since deleting v cannot create cycles.
« By inductive hypothesis, G—v has a topological ordering.
« Place v first in topological ordering;
» then append nodes of G—v in topological order.
= This is valid since v has no entering edges.

i

TS algorithm: analysis

Theorem. Algorithm finds a topological order in O(m + n) time.
Pf.

» Maintain the following information:

= count(w) = remaining number of incoming edges

= S:set of remaining nodes with no incoming edges
e Initialization: O(m + n) via single scan through graph.
« Update: to delete v

« remove v from S

= decrement count(w) for all edges from v to w

o add w to S if count(w) hits 0
« thisis O(1) per edge

TS algorithm: example

R g 3 e
v‘v RO’

(b) (c)

@!0 () 00'@

