Algorithm Il

2. Algorithm Analysis

WU Xiaokun 2885

xkun.wu [at] gmail

Why analyzing algorithms?
Precise assessment leads to better understanding.

* correctness
» theoretical proof
= practical implementation
» efficiency. iterative development
= computable?
= what design to choose?
= any room for improvement? or terminate?

i

Why analyzing algorithms?
Precise assessment leads to better understanding.

* correctness
» theoretical proof
= practical implementation
» efficiency. iterative development
= computable?
= what design to choose?
= any room for improvement? or terminate?

We focus on the efficiency of algorithms now.

i

Content

« Computational Tractability

« Asymptotic Order of Growth
« Implement Gale—Shapley

« Common Running Times

« Recap: Priority Queue

Computational Tractability

What is “Computational Tractability”

Loosely speaking: delimitate whether a problem can be solved in practice.

« usually, relative to current computing power.
= imagine a cart driven by a motor

« also, contextual tolerance is often a key consideration.
= .., patience of your customer

What is “Computational Tractability”

Loosely speaking: delimitate whether a problem can be solved in practice.

« usually, relative to current computing power.
= imagine a cart driven by a motor

« also, contextual tolerance is often a key consideration.
= .., patience of your customer

Intractable problem maybe solvable in theory, but in practice any solution takes too
many resources to be useful.

i

What is “Computational Tractability”

Loosely speaking: delimitate whether a problem can be solved in practice.

« usually, relative to current computing power.
= imagine a cart driven by a motor

« also, contextual tolerance is often a key consideration.
= .., patience of your customer

Intractable problem maybe solvable in theory, but in practice any solution takes too
many resources to be useful.

So efficiency is about: resource requirements vs. computational power.

Analytic Engine

"By what course of calculation can these results be arrived at by the machine in
the shortest time?” — Charles Babbage (1864)

Modern computing model

Consider a 64-bit system:

« Each memory cell stores a 64-bit integer.
« Primitive operations: arithmetic/logic operations, read/write memory, array
indexing, following a pointer, conditional branch, etc.

imput | [[[[

program =[] memory

Modern computing model

Consider a 64-bit system:

« Each memory cell stores a 64-bit integer.
« Primitive operations: arithmetic/logic operations, read/write memory, array
indexing, following a pointer, conditional branch, etc.

mput [[[[[
program =[] memory
output| | | [-] | |

» Time: Number of primitive operations, given CPU speed.
« Space: Number of memory cells utilized.

i

How to define efficiency?

Intuition. When implemented, runs fast and uses few memory on real inputs.

« what platform? PC, cellphone
o what is a “real” inputs? st ruct, int

We need a measure of algorithm itself, rather than external indicators.

i

How to define efficiency?

Intuition. When implemented, runs fast and uses few memory on real inputs.

« what platform? PC, cellphone
o what is a “real” inputs? st ruct, int

We need a measure of algorithm itself, rather than external indicators.

Can we measure efficiency when input number is fixed (same PC)?

« equal: count number of operations/cells required per unit input.
= counter-example: print N number pairs vs. N numbers.

i

How to define efficiency?

Intuition. When implemented, runs fast and uses few memory on real inputs.

« what platform? PC, cellphone
o what is a “real” inputs? st ruct, int

We need a measure of algorithm itself, rather than external indicators.

Can we measure efficiency when input number is fixed (same PC)?

« equal: count number of operations/cells required per unit input.
= counter-example: print N number pairs vs. N numbers.

Better measure: How is the algorithm scale with problem size.

i

Scalability
How resource requirements grow with increasing input size.

« The input has a natural "size” parameter V.
« Analyze running time mathematically as a function T'(N).

i

Scalability
How resource requirements grow with increasing input size.

« The input has a natural "size” parameter V.
« Analyze running time mathematically as a function T'(N).

So we study and compare growth of functions.

« sampling: measure efficiency at a series of fixed input numbers.

i

Scalability
How resource requirements grow with increasing input size.

« The input has a natural "size” parameter V.
« Analyze running time mathematically as a function T'(N).

So we study and compare growth of functions.
« sampling: measure efficiency at a series of fixed input numbers.

« compare: “standard” behavior among all possible inputs
» sorting does nothing (thus fast), when input already sorted

Worst-Case Analysis

Worst-Case Running Times: longest possible running time.

« well-accepted standard, but not perfect
» pathological inputs can lead to bad performance
« hard to find effective alternative

i

Worst-Case Analysis

Worst-Case Running Times: longest possible running time.

» well-accepted standard, but not perfect
» pathological inputs can lead to bad performance
« hard to find effective alternative

Average-case analysis: averaged over “random” instances.

« more about how random inputs were generated (than algorithm itself)
= real random generator Is actually hard to implement

i

Worst-Case Analysis

Worst-Case Running Times: longest possible running time.

» well-accepted standard, but not perfect
» pathological inputs can lead to bad performance
= hard to find effective alternative

Average-case analysis: averaged over “random” instances.

« more about how random inputs were generated (than algorithm itself)
= real random generator is actually hard to implement

Now consider and compare T'(N) on worst-cases

» need a baseline implementation to mark the worst possibility.

i

Brute-Force Search

Brute-Force Search: the most natural last-resort solution.

« enumerate all possibilities
= NO use in practice, but usually gives exact analytical bounds.
= Stable matching: test all n! perfect matchings for stability.

i

Brute-Force Search

Brute-Force Search: the most natural last-resort solution.

« enumerate all possibilities
= NO use in practice, but usually gives exact analytical bounds.
= Stable matching: test all n! perfect matchings for stability.

Define efficient. achieves qualitatively better worst-case performance, at an
analytical level, than brute-force search.

« analytically shows algorithmic heuristics and problem structure
= helps understanding, thus improve design

i

Brute-Force Search

Brute-Force Search: the most natural last-resort solution.

« enumerate all possibilities
= NO use in practice, but usually gives exact analytical bounds.
= Stable matching: test all n! perfect matchings for stability.

Define efficient. achieves qualitatively better worst-case performance, at an
analytical level, than brute-force search.

« analytically shows algorithmic heuristics and problem structure
= helps understanding, thus improve design

What is "qualitatively better"? Better scalability

« brute-force search usually grow exponentially fast
e intuitively, growth rate should be much slower

Polynomial running time

Desirable scaling property. When input size doubles, algorithm slow down by at
most some multiplicative constant factor C.

i

Polynomial running time

Desirable scaling property. When input size doubles, algorithm slow down by at
most some multiplicative constant factor C.

An algorithm is poly-time if the above scaling property holds.

There exist constants ¢ > 0 and d > 0 such that, for every input of size N, the running time
of the algorithm is bounded above by eN“ primitive computational steps.

e here C = 2¢
* lower-degree polynomials grow slower

Polynomial efficiency

Def. An algorithm is efficient if it has a polynomial running time.

Polynomial efficiency

Def. An algorithm is efficient if it has a polynomial running time.

« exactly characterize algorithm itself
= platform-, instance-independent

i

Polynomial efficiency

Def. An algorithm is efficient if it has a polynomial running time.

« exactly characterize algorithm itself
= platform-, instance-independent

« WOrks in practice
= preak-through exponential barrier exposes crucial structure
o when exist, always found moderately growing polynomials

i

Polynomial efficiency

Def. An algorithm is efficient if it has a polynomial running time.

« exactly characterize algorithm itself
= platform-, instance-independent

« WOrks in practice
= preak-through exponential barrier exposes crucial structure
o when exist, always found moderately growing polynomials

« becomes negatable: define inefficiency

i

Polynomial efficiency

Def. An algorithm is efficient if it has a polynomial running time.

« exactly characterize algorithm itself
= platform-, instance-independent

« WOrks in practice
= break-through exponential barrier exposes crucial structure
o when exist, always found moderately growing polynomials

« becomes negatable: define inefficiency

Exceptions: galactic constants and/or huge exponents

« which is better: 20n12? or plt002Inns

i

Common polynomials

Assume: one million (10%) high-level instructions per second.

n n log, n n® n3 1.50 2" n!

n=10 < | sec < | sec < | sec < | sec < | sec < | sec 4 sec
=30 < | sec < | sec < 1 sec < | sec < | sec 18 min 107 years
n=>50 < | sec <] sec < 1 5ec < 1 sec 11 min 30 years very long
=100 < 1 sec =] sec < | sec 1 sec 12,892 years 10'7 years very long
n= 1,000 < | sec <] sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12days 31,710 years very long very long very long

Notice the the huge difference between polynomial and exponential.

—_—
—
=

Common polynomials

Assume: one million (10%) high-level instructions per second.

n n log, n n? n’ 1.5" 2" n!

n=10 < | sec < 1 sec < 1 sec < | sec < | sec < | sec 4 sec
=30 < | sec < | sec < | sec < | sec < | sec 18 min 107 years
n=>50 < | sec <] sec < 1 5ec < 1 sec 11 min 30 years very long
=100 < 1 sec =] sec < | sec 1 sec 12,892 years 10'7 years very long
n= 1,000 < | sec <] sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < | sec 2sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12days 31,710 years very long very long very long

Notice the the huge difference between polynomial and exponential.

Now we found the way to compare growth of functions.

e compare different categories of growth rate

Asymptotic Order of Growth

i

Asymptotic analysis
Mathematically, asymptotic is used for describing limiting behavior.

» rigorous description of scalability: growth rate
» only a coarser level of granularity is necessary
= Ex. 1.62n* + 3.5n + 8 steps

i

Asymptotic analysis
Mathematically, asymptotic is used for describing limiting behavior.

» rigorous description of scalability: growth rate
» only a coarser level of granularity is necessary
= Ex. 1.62n* + 3.5n + 8 steps

Limits are natural bounds for analysis.

« upper bound, lower bound, exact bound.
» especially, upper bound for worst case

i

Asymptotic analysis
Mathematically, asymptotic is used for describing limiting behavior.

» rigorous description of scalability: growth rate
» only a coarser level of granularity is necessary
= Ex. 1.62n* + 3.5n + 8 steps

Limits are natural bounds for analysis.

« upper bound, lower bound, exact bound.
» especially, upper bound for worst case

Caution. In CS, deal with discrete quantities.

» no such thing as “infinitesimal” in calculus.

i

Asymptotic Upper Bounds (Big O)

T(n)is O(f(n)) (read as “T'(n) is order f(n)”)

» for sufficiently large n, function T'(n) is bounded above by a constant multiple of f(n).
e 3¢ > 0,n9 = 0:Vn > ny,T(n) < cf(n).
= ¢ cannot depend on n.

i

Asymptotic Upper Bounds (Big O)

T(n)is O(f(n)) (read as “T'(n) is order f(n)”)

o for sufficiently large n, function T'(n) is bounded above by a constant multiple of f(n).
e 3¢ > 0,n9 = 0:Vn > np,T(n) < cf(n).
= ¢ cannot depend on n.

Ex. T(n) = pn® + qn +r:

e T(n)=pr® +qn+r<pn®+qn’+rn’ = (p+q+r)n?
» T(n) < cn® € O(n?),wherec=p+q+r.

Big O notational abuses

One-way “equality”. O(g(n)) is a set of functions.

* f(n) € O(g(n)).
« but CSer often write f(n) = O(g(n)).

i

Big O notational abuses

One-way “equality”. O(g(n)) is a set of functions.

* f(n) € O(g(n)).
« but CSer often write f(n) = O(g(n)).

Note. O(-) expresses only an upper bound.

e T(n) =pn? + q¢" +r = O(n?), since n? < n?.
= but we cannot say T'(n) = sn®.
e in practice, we prefer “tightest” possible bound.

i

Big O notational abuses

One-way “equality”. O(g(n)) is a set of functions.

* f(n) € O(g(n)).
« but CSer often write f(n) = O(g(n)).

Note. O(-) expresses only an upper bound.

e T(n) =pn? + ¢" +r = O(n?), since n? < n?.
= but we cannot say T'(n) = sn”.
e in practice, we prefer “tightest” possible bound.

Domain and Range. T" and f are real-valued functions.

« domain is typically natural numbers: N — .
» Sometimes extend to the reals: K-, — R.
e Or restrict to a subset.

Big O: properties

Reflexivity. f is O(f).

Big O: properties
Reflexivity. f is O(f).

Constants. If fis O(g) and ¢ > 0, then ¢f is O(g).

i

Big O: properties
Reflexivity. f is O(f).
Constants. If fis O(g) and ¢ > 0, then ¢f is O(g).

Products. If f; is O(g;) and f2 is O(g2), then f; fois O(g192).
Pf.

e dey > Oandny > 0suchthat0 < fi(n) < c1g1(n) foraln > n;.
e dey > Oandns > 0suchthat 0 < fi(n) < eage(n) for all n > no,.

e Then, 0 < fi(n)fa(n) < crcagi(n)gz(n) for all n > max{n;,na}.

i

Big O: properties
Reflexivity. f is O(f).
Constants. If fis O(g) and ¢ > 0, then ¢f is O(g).

Products. If f; is O(g;) and f2 is O(g2), then f; fois O(g192).
Pf.

e dey > 0andny > 0suchthat0 < fi(n) < c1g1(n) foraln > n;.
e dey > Oandns > 0suchthat 0 < fi(n) < eage(n) for all n > ns,.

e Then, 0 < fi(n)fa(n) < cicagi(n)gz(n) for all n > max{n;,na}.

Sums. If f;isO(g;) and fs is O(g:), then f1 + f2 is O(max{g;,g2}).

i

Big O: properties
Reflexivity. f is O(f).
Constants. If fis O(g) and ¢ > 0, then ¢f is O(g).

Products. If f; is O(g;) and f2 is O(g2), then f; fois O(g192).
Pf.

e dey > 0andny > 0suchthat0 < fi(n) < c1g1(n) foraln > n;.
e dey > Oandns > 0suchthat 0 < fi(n) < eage(n) for all n > no,.

e Then, 0 < fi(n)fa(n) < cicagi(n)gz(n) for all n > max{n;,na}.
Sums. If f;isO(g;) and fs is O(g:), then f1 + f2 is O(max{g;,g2}).

Transitivity. If f is O(g) and g is O(h), then fis O(h).

i

Big O: properties
Reflexivity. f is O(f).
Constants. If fis O(g) and ¢ > 0, then ¢f is O(g).

Products. If f; is O(g;) and f2 is O(g2), then f; fois O(g192).
Pf.

e dey > Oandny > 0suchthat0 < fi(n) < c1g1(n) foraln > n;.
e dey > Oandns > 0suchthat 0 < fi(n) < eage(n) for all n > no,.
e Then, 0 < fi(n)fa(n) < ercag1(n)ga(n) for all n > max{n,,ns2}.

Sums. If f;isO(g;) and fs is O(g:), then f1 + f2 is O(max{g;,g2}).
Transitivity. If f is O(g) and g is O(h), then fis O(h).

EX. f(n) = 5n® + 3n% 4+ n + 1234 is O(n®).

i

Asymptotic Lower Bounds (Big (2)

T'(n)1s 2(f(n)) (“T'(n) = Q(f(n))")

o for sufficiently large n, function T'(n) is at least a constant multiple of f(n).
e Je > 0,n9 > 0:Yn > ny,T(n) = ef(n).
= ¢ cannot depend on n.

i

Asymptotic Lower Bounds (Big (2)

T'(n)is Q(f(n)) (“T'(n) = Q(f(n))")

e for sufficiently large n, function T'(n) is at least a constant multiple of f(n).
e Je > 0,n9 > 0:Yn > ny,T(n) = ef(n).
= ¢ cannot depend on n.

Ex. T'(n) = 32n? + 17Tn + 1

« T'(n) is both 2(n?) and 2(n).
« T(n) is not Q(n?).

i

Asymptotically Tight Bounds (Big ©)

T'(n)is ©(f(n)) (“T(n) = ©(f(n))")

e T'(n) is both O(f(n)) and also 2(f(n)).
e de; >0, >0,ng > 0:Yn > mnp,0 < e1f(n) <T(n) < eaf(n)
= ¢, C2 Cannot depend on n.

i

Asymptotically Tight Bounds (Big ©)

T'(n)is ©(f(n)) (“T(n) = ©(f(n))")

e T'(n) is both O(f(n)) and also 2(f(n)).
e de; >0, >0,ng > 0:Yn > mnp,0 < e1f(n) <T(n) < eaf(n)
= ¢, C2 Cannot depend on n.

Ex. T'(n) = 32n? + 17Tn + 1

« T(n)is O(n?).
« T'(n) is neither ©(n*) nor O(n).

i

Asymptotically Tight Bounds (Big ©)

T'(n)is ©(f(n)) (“T(n) = ©(f(n))")

e T'(n) is both O(f(n)) and also 2(f(n)).

e de; >0, >0,ng > 0:Yn > mnp,0 < e1f(n) <T(n) < eaf(n)
= ¢, C2 Cannot depend on n.

Ex. T'(n) = 32n? + 17Tn + 1

« T(n)is O(n?).
« T'(n) is neither ©(n*) nor O(n).

Compute: closing gap between upper bound and lower bound

« design: a worst-case algorithm as upper bound
= prove: no better possibilities
« justify asymptotically tight bound on worst-case running fime

i

Asymptotic bounds and limits

Proposition. If for some constant 0 < ¢ < 0o limy, o 27 =

Pf.

» By definition of the limit, Ve > 0, 3ng : ¢ — e < 22
« Choose € = j¢ > 0.

" %ﬂﬂ(”) < f(n) < gﬂg{n},‘v’n > ny.

cthen f(n)is O(g(n))

< c+€Vn = nyg.

i

Asymptotic bounds and limits

Proposition. If for some constant 0 < ¢ < oo lim, ﬁ—ﬁ —= cthen f(n)is O(g(n))

Pf.
» By definition of the limit, Ve > 0, 3ng : ¢ — e < £

g(n)
» Choose € = j¢ > 0.
. éﬂg[n) < f(n) < gcg{n},‘t:‘n > ny.

< c+eYn 2 ng.

Proposition. If lim,, ., 21"
|:
{

L
-|_-"l-|.::_’.-' i | e
|
E;
o
-
=
o,
=
e’
&
-
—
o
£
o
e
=2
=
-
o
ﬁ
O
—
o
=
e
il

Proposition. If lim,, .o 2"

Asymptotic bounds for common functions

Polynomials. Let f(n) = ag + a1n + ... + agn® with az > 0. Then f(n) = 6(n?).
Pt. lim,,_,, Staunt.tan® _ oo~

&

Asymptotic bounds for common functions

Polynomials. Let f(n) = ag + a1n + ... + agn® with az > 0. Then f(n) = 6(n?).

i o
- Ty i1 = « ik
Pr. llln” — N0 "I'I_"l I :r:” = — ﬂ.d :::‘ D

&

Logarithms. log, n = ©(log, n) for everya > 1 and every b > 1.

f log, m _ 1
" log, n log, a”

Asymptotic bounds for common functions

Polynomials. Let f(n) = ag + a1n + ... + agn® with az > 0. Then f(n) = 6(n?).

i i
Q@) 1. -« . TIRgT .
- 7 = a4 - D

&

PE. img s

Logarithms. log, n = ©(log, n) for everya > 1 and every b > 1.

f log, m _ 1
" log, n log, a”

Logarithms and polynomials. log, n = O(n") for every a > 1 and every d > 0.

. log. n
Pf. lim, ., —+ = 0.

i

Asymptotic bounds for common functions

Polynomials. Let f(n) = ag + a1n + ... + agn® with az > 0. Then f(n) = 6(n?).

i
2101 - . T24T .
- 7 = a4 - D

&

PE. img s

Logarithms. log, n = ©(log, n) for everya > 1 and every b > 1.

f log, m _ 1
" log, n log, a”

Logarithms and polynomials. log, n = O(n") for every a > 1 and every d > 0.

. log. n
Pf. lim,, .~ E‘; = 1.

Exponentials and polynomials. n® = O(r") for every r» > 1 and every d > 0.

2 i
Pf. llm”- T :_:E,'_,' — D1

i

Asymptotic bounds for common functions

Polynomials. Let f(n) = ag + a1n + ... + agn® with az > 0. Then f(n) = 6(n?).

i
2101 - . T24T .
- 7 = a4 - D

&

PE. img s

Logarithms. log, n = ©(log, n) for everya > 1 and every b > 1.

f log, m _ 1
" log, n log, a”

Logarithms and polynomials. log, n = O(n") for every a > 1 and every d > 0.

. log. n
Pf. lim,, .~ E‘; = 1.

Exponentials and polynomials. n® = O(r") for every r» > 1 and every d > 0.

2 i
Pf. llm”- T :_:E,'_,' — D1

Factorials. n! = 29(nlen),
Pf. Stirling’s formula: n! ~ +/2mn(2)".

Big O notation with multiple variables

Upper bounds. f(m,n) = O(g(m,n)) if there exist constants ¢ > 0,my > 0, and
ng > 0suchthat0 < f(m,n) < eg(m,n) for all n > ng, m > my.

i

Big O notation with multiple variables

Upper bounds. f(m,n) = O(g(m,n)) if there exist constants ¢ > 0,my > 0, and
ng > 0suchthat0 < f(m,n) < eg(m,n) for all n > ng, m > my.

Ex. f(m,n) = 32mn* 4+ 17mn + 32n°.

o f(m,n)isboth O(mn® + n®) and O(mn?).
e f(m,n) is neither O(n*) nor O(mn?).
= f(m,n)is O(n”) if a precondition to the problem implies m < n.

Implement Gale-Shapley

Goal: O(n?) implementation
Compute: closing gap between upper bound and lower bound

 design: a worst-case algorithm as upper bound
= prove: no better possibilities

i

Goal: O(n?) implementation
Compute: closing gap between upper bound and lower bound

« design: a worst-case algorithm as upper bound
= prove: no better possibilities

Recall: Algorithm terminates in at most n? iterations

« worst-case bound: O(n?)
= Goal: find a O(n?) implementation
o each iteration takes constant time, ie., O(1)
« tightest? discuss later

i

Recap: Gale-Shapley

INPUT: M. W, R,,, R.,
1. P=g matkme Mandw € W free;

2. WHILEsome m e M IS free

1. w: highest on R,, that m has not yet proposed,;
2. IFwis free
1. Add (m,w) to P;
3. ELSE IF w prefers m to current partner m'
1. Replace (m', w) with (m, w), set m' free;
4. ELSE (Nothing happens.),
3. RETURN P,

i

Constant time operations

Goal: the following operations take constant time:

1. identify @ free m.
2. given m, identify highest-ranked w that m not yet proposed.
3. given w, decide if iS matched,
« if s0, identify current partner m'.
4. identify which ranks higher for w: m or m'.

i

Representation 1: next free

List NF containing indices of M (queue or stack also works)

« initialize to n indices

= initialization: O(n) (is also O(n*?))
« take next free element: O(1)
« if replaced, push back: O(1)

Representation 2: proposal
Reuse the preference list R,,,, only check the head.

 head always has highest-ranked w: O(1)
« after taking out w, remove current head: O(1)

i

Representation 2: proposal
Reuse the preference list R,,,, only check the head.

 head always has highest-ranked w: O(1)
« after taking out w, remove current head: O(1)

If K,, IS constant, maintain a pointer to next proposal.

e moving pointer to the next: O(1)

i

Representation 3: matching
Index M, W:{1,2,...,n}.

Matching. Arrays P, P,.

e if m matched to w: P,,(m) = w, P,(w) = m.
= add/remove matching pair: O(1)

e initialize P,,, P, t0 0: unmatched.
= identify whether mat ched, and to whom: O(1)
= initialization: O(n) (= O(n?))

Representation 4: compare ranks
So far, operation 1-3 can be implemented in O(1) time.

« now: identify which ranks higher for w: m or m’.

Representation 4: compare ranks

So far, operation 1-3 can be implemented in O(1) time.
« now: identify which ranks higher for w: m or m'.
Naive implementation: walk R,

e O(n) time to find m and m' on the list
= breaks our O(1) time goal

Alternative: trade space for time.

i

Representation 4: compare ranks (cont.)

For each w € W, maintain an array [,, contains the inverse of R,,.

]st 2nd 3rd 4th Gth Gth 7th Bt

8 3 7 1 (4) 5 (6) 2
f

pref[]

[2 b ! 8

3 4 5
rank(]
Ath 8th znd(ﬁu'l:]ﬁ'lh Zth) 3Ird st

efori=1ton: I,[R,[i]] =i
= only need to compare I,,m| and I,,|m'|: O(1)
« O(n?) time initialization: iterate for each w.

Gale-Shapley implementation: summary

Theorem. Can implement Gale-Shapley to run in O(n?) time.
Pf.

« ©(n?) preprocessing time to create n inverse ranking arrays.
« There are O(n*) proposals; processing each proposal takes O(1) time.

Gale-Shapley implementation: summary

Theorem. Can implement Gale-Shapley to run in O(n?) time.
Pf.

« ©(n?) preprocessing time to create n inverse ranking arrays.
« There are O(n*) proposals; processing each proposal takes O(1) time.

Theorem. In the worst case, any algorithm to find a stable matching must query R,,
for 2(n*) times.
[proof skipped.]

Gale-Shapley implementation: summary

Theorem. Can implement Gale-Shapley to run in O(n?) time.
Pf.

« ©(n?) preprocessing time to create n inverse ranking arrays.
« There are O(n*) proposals; processing each proposal takes O(1) time.

Theorem. In the worst case, any algorithm to find a stable matching must query R,,
for 2(n*) times.
[proof skipped.]

Conclusion. GS = ©(n?)

i

Common Running Times

Constant time
Constant time. Running time is O(1).

« bounded by constant: not depend on input size n

i

Constant time
Constant time. Running time is O(1).

« bounded by constant: not depend on input size n

Examples.

« Conditional branch.

« Arithmetic/logic operation.

« Declare/initialize a variable.

« Follow a link in a linked list.

* Access element ¢ in an array.

« Compare/exchange two elements in an array.

i

Linear time

Linear time. Running time is O(n).

e process input in a single pass,
= spending constant time on each encountered item

i

Linear time
Linear time. Running time is O(n).

e process input in a single pass,
= spending constant time on each encountered item

Computing the Maximum.

Merge two sorted lists. Combine two sorted linked lists A = a4, as,
B = by, by, ...,b, into a sorted whole.

» at most 2n iterations

Merged result

Al A
T

L b

vuing il @N0

i

Quiz: Target-Sum

Target-Sum. Given a sorted array of n distinct integers and an integer T, find two
that sum to exactly 1'7

Hint: move two indices from opposite side towards each other.

Logarithmic time (Sublinear)

Logarithmic time. Running time is O(logn).

« splits input into two equal-sized pieces,

= Solves each piece recursively,

= then combines two solutions in constant time.
« divide-and-conquer

i

Logarithmic time (Sublinear)

Logarithmic time. Running time is O(logn).

« splits input into two equal-sized pieces,

= Solves each piece recursively,

= then combines two solutions in constant time.
« divide-and-conquer

Search in a sorted array. Given a sorted array A of n distinct integers and an
integer x, find index of = in array.
Binary search.

« Invariant: If z is in the array, then z is in Allo..hi.
« After k iterations of wHILE loop, (hi — lo+1) < n/2" = k < 1 + log, n.

i

Demo: Binary search

i

Linearithmic time

Linearithmic time. Running time is O(n logn).

« splits input into two equal-sized pieces,

= Solves each piece recursively,

= then combines two solutions in linear time.
« divide-and-conquer

i

Linearithmic time

Linearithmic time. Running time is O(n logn).

« splits input into two equal-sized pieces,

= Solves each piece recursively,

= then combines two solutions in linear time.
« divide-and-conquer

Sorting. Given an array of n elements, rearrange them in ascending order.

Merge sort

6 7 8§ 91011 12 13 14 15

5

4
M E R G E S O RTEX A MUP L E

& v v

L= - 4 -

G
E ‘E

> X

< -

-

= O >

W= - -

- 0. N

w = &

- O£

w Q.

w O
< =

E G L

A E E E

1l

i

Quadratic time
Quadratic time. Running time is O(n?).

« nested loops: search over all pairs of input items
= spend constant time per pair.
« just the brute-force approach

i

Quadratic time

Quadratic time. Running time is O(n?).

« nested loops: search over all pairs of input items
= spend constant time per pair.
« just the brute-force approach

Closest pair of points. Given a list of n points in the plane
(z1,91), (Z2,42), ..., (Ta, yn), find the pair that is closest to each other.
O(n?) algorithm. Enumerate all pairs of points (with i < j).

Remark. (2(n?) seems inevitable, but this is just an illusion.

i

Cubic time
Cubic time. Running time is O(n?).

» nested loops: search over all subsets of size 3.
« almost the borderline of practical

i

Cubic time
Cubic time. Running time is O(n?).

» nested loops: search over all subsets of size 3.
« almost the borderline of practical

3-SUM. Given an array of n distinct integers, find three that sum to 0.
O(n?) algorithm. Enumerate all triples (with i < j < k).

Remark. Q2(n®) seems inevitable, but O(n?) is not hard.

i

Polynomial time
Polynomial time. Running time is O(n"*) for some constant k > 0.

» nested loops: search over all subsets of size k.
« computationally too hard to be practical

i

Polynomial time
Polynomial time. Running time is O(n"*) for some constant k > 0.

» nested loops: search over all subsets of size k.
« computationally too hard to be practical

Independent set of size k. Given a graph, find k& nodes
such that no two are joined by an edge.
O(n*) algorithm. Enumerate all subsets of k nodes. f

W

N

« Check whether S is an independent set of size k takes O(k?) time.
» Number of k-element subsets = (}) = "2kl < o
e in total: O(k*n* /k!) = O(nF)

Exponential time

Exponential time. Running time is 0[2”*} for some constant k > 0.

e combinatorial: enumerate all subsets

i

Exponential time

Exponential time. Running time is O[Z"k] for some constant k > 0.

e combinatorial: enumerate all subsets

Independent set. Given a graph, find independent set of

. . il e R
max cardinality. S R ~
O(n?2") algorithm. Enumerate all subsets of n {1§
elements. \ o

» total number of subsets: 2"

>
/

Quiz: Exponential time

Which is an equivalent definition of exponential time?

e« O(27").

« O(2°") for some constant ¢ > 0.
 Both.

» Neither.

Quiz: Exponential time

Which is an equivalent definition of exponential time?

e« O(27").

« O(2°") for some constant ¢ > 0.
 Both.

» Neither.

Neither: take the limit of division.

Recap: Priority Queue

i

Priority
Primary goal. seek algorithms that improve qualitatively on brute-force search.

 use polynomial-time solvability as concrete formulation
« more complex data structures lead to better performance

i

Priority
Primary goal. seek algorithms that improve qualitatively on brute-force search.

 Use polynomial-time solvability as concrete formulation
« more complex data structures lead to better performance

Priority Queue. Each element has a priority value.

» properties
= always take out the highest-priority element
» O(logn) time per operation.
 should be familiar after taking Data Structure & Operating System.

i

Heap
Maintain elements in sorted order of keys.

« alternatives: sorted array, sorted doubly linked list

i

Heap
Maintain elements in sorted order of keys.

« alternatives: sorted array, sorted doubly linked list
Conceptually, think heap as balanced binary tree

HEEP order: For every element v, at a node i, the element w at i's parent satisfies
key(w) < key(v).

1 Each node's kiy is at least
&8 large a8 its parent’s,
_—:-__‘_‘ i :
';-\'l Ii 2| 5|01 3 11 (15 I:"J,ﬂ':"l."'-lill.‘p]!h;

f /X Llelpluislzls
% b

i

Heap Operations
Heapify-up: fixing the heap by pushing the damaged part upward.
« insert a new element in a heap of n elements in O(logn) time.

Heapify-down: proceeds down the tree recursively.

« delete a new element in a heap of n elements in O(logn) time.

Implementing Priority Queues

« StartHeap(N): O(n)

e Insert(H, v): O(log n)

« FindMin(H): O(1)

e Delete(H, i): O(logn)

« ExtractMin(H): O(log n)

