Algorithm Il

1. Stable Matching

WU Xiaokun 2885

xkun.wu [at] gmail



i

Problem solving steps

1. formulate problem with enough mathematical precision that:
« pose concrete questions,
« motivate smart solutions;
2. design an algorithm for the problem;
3. analyze the algorithm to:
 prove it is correct,
e give a bound on running time (thus establish efficiency).



i

Content

» Stable Matching

» Gale-Shapley Algorithm

« Proof of Correciness

» (Exclusive) Optimality

« Context

« Five Representative Problems



Stable Matching



i

The story
Consider job recruiting procedure:

« several companies would each offer one position
» a group of students made applications to every company
 these two groups are mutually acceptable, but each has preferences

Similar situations: PhD admission, apartment renting, marriage, etc.



i

The story
Consider job recruiting procedure:

« several companies would each offer one position
» a group of students made applications to every company
 these two groups are mutually acceptable, but each has preferences

Similar situations: PhD admission, apartment renting, marriage, etc.

Can anything goes wrong?

« someone made a side-deal with another company during intern
e some company revoked offer
e circular preference



Everyone likes predictable process

Instability. Consider an “arranged pair’ m and w:

« m prefers w' to its current partner w
« w prefers m' to its current partner m

Whenever there's a chance, they break up.

- L

Instability



i

Everyone likes predictable process

Instability. Consider an “arranged pair’ m and w:

« m prefers w' to its current partner w
» w prefers m’ to its current partner m

Whenever there's a chance, they break up.

Stable assignment. Assignment with no instability.

« proceed in a spontaneous way
« individual self-interest prevents side deals

How to formulated this story into a problem mathematically?

- S

Instability



i

Stable Matching Problem: Input

Entities. Set M = {m;,ma, ....,m, } and W = {w;, wa, ..., w, }

« each has n entities.

Preference. Each m € M ranks W into R,,,, and each w € W ranks M into R,,.

15t znd 3r|:|

Atlanta Xavier Yolanda Zeus Xavier Boston Atlanta  Chicago
ol Yolanda Xavier Zeus ‘IFLEE  Atlanta Boston Chicago

W\l @ Xavier Yolanda Zeus Zeus Atlanta  Boston  Chicago



i

Matching

Let M x W:set of all possible ordered pairs of the form (m, w ), where m € M and
we W.

Matching. a subset of M x W, where eachm € M and w € W appears in at most
one pair.

* M — iy, W — i, are injective, where i,,, i,, are partner’s index



i

Matching

Let M x W:set of all possible ordered pairs of the form (m, w), where m € M and
we W.

Matching. a subset of M x W, where eachm € M and w € W appears in at most
one pair.

* M — iy, W — i, are injective, where i,,, i,, are partner’s index

A matching P is perfectif |P| = |M| = |W| = n.

1:.! 2“‘1 3 rd

1st Jnd Frd

Atlanta W

SEGUM Yolanda Xavier Zeus \(IEULEE  Atlanta | Bostem  Chicago

INEGTH Xavier Yolanda = Zeus Xavier BTG

o {I-T..0 Xavier Yolanda Zeus

feus

Boston  Chicago



i

Stable Matching Problem: Output

A stable matching is a perfect matching with no instability.

(YIEUITW  Xavier | Yolanda = Zeus Xavier Boston  Atlanta = Chicago

15t 2nd 3rd

oL Yolanda  Xavier Zeus ‘LUl Atlanta  Boston Chicago

Chicago Mavier  Yolanda Zeus Zeus Atlanta = Boston  Chicago



Stable Matching Problem: Output

A stable matching is a perfect matching with no instability.

15t 2nd 3rd

Atlanta Xavier | Yolanda m Boston Atlanta ﬂhi‘:ﬂu

LOouM Yolanda Xavier Zeus ‘i ruecl Atlanta  Beston  Chicago

Chicago Mavier  Yolanda Zeus Zeus Atlanta = Boston  Chicage

Stable Matching Problem. Given preference lists, find a stable matching (if exists).

Atlanta Xavier Yolanda Zoeus Xavier Boston Chicago

Boston Lot R Zeus VrLLEl Atlanta Il'uﬂnn Chicagn

Wil Xavier  Yolanda | Zeus yJCHl Atlanta  Boston | Chicago

Il

= Note: X, Y, Z are not most satisfied, any clue?



Gale-Shapley Algorithm



i

States

Clearly, each entity has two states in our current formulation: free, oOr matched.

 [Sit enough? Let's brainstorm a scenario where m proposesto each w € W.



i

States

Clearly, each entity has two states in our current formulation: free, oOr matched.

 [Sit enough? Let's brainstorm a scenario where m proposesto each w € W.

If w got proposed:

» might too rush to accept: better ones might come later.
« might too risky to reject: this could be the best ever comes.



i

States

Clearly, each entity has two states in our current formulation: free, oOr matched.

 [Sit enough? Let's brainstorm a scenario where m proposesto each w € W.

If w got proposed:

» might too rush to accept: better ones might come later.
« might too risky to reject: this could be the best ever comes.

We need a third state: engaged.



i

State transitions

1. Initially, everyone is free.
2. Let’s say an arbitrary m proposes to each w € W

1. in order of preference list R,,,.
3. suppose w got proposed, and if:

1. free: engage.
2. engaged to m': check its preference list R, :

1. m' is higher: reject m, then m will propose to next one.
2. m is higher: engage m, which makes m' free.
4. When everyone is engaged, claim it the final matching.



i

Gale-Shapley algorithm

INPUT: M. W, R,,, R.,
1. P=g:matkme Mandw € W free;

2. WHILEsome m € M is free

1. w: highest on R,, that m has not yet proposed,;
2. IFwis free
1. Add (m,w) to P;
3. ELSE IF w prefers m to current partner m'
1. Replace (m', w) with (m, w), set m’' free,
4. ELSE (Nothing happens.),
3. RETURN P;



Demo: G-S



i

Proof of Correctness



i

Termination

Observation 1. Each m proposes in decreasing order of preference (getting worse
and worse).

Observation 2. Once w engaged, it's never free again, but “trades up” (getting better
and better).



i

Termination

Observation 1. Each m proposes in decreasing order of preference (getting worse
and worse).

Observation 2. Once w engaged, it's never free again, but “trades up” (getting better
and better).

Claim. G-S algorithm terminates after at most n* iterations.
Pf. One of M proposes to a new candidate in each iteration, and there are at most
n? possible proposals.



i

Perfect matching

Claim (injection). G-S algorithm outputs a matching.
Pf. [from observations]

« m proposes only if free = maitched to at most 1
» w keeps only the best = maitched to at most 1



i

Perfect matching

Claim (injection). G-S algorithm outputs a matching.
Pf. [from observations]

« m proposes only if free = maitched to at most 1
» w keeps only the best = maitched to at most 1

Claim (surjection). In G-S matching, all M get matched.
Pf. [by contradiction]

e suppose m € M is still £ree upon termination.
« at least one w € W is unmatched.

* SO w was never proposed to.

« but m proposed to everyone, contradiction.



i

Perfect matching

Claim (injection). G-S algorithm outputs a matching.
Pf. [from observations]

« m proposes only if free = maitched to at most 1
» w keeps only the best = maitched to at most 1

Claim (surjection). In G-S matching, all M get matched.
Pf. [by contradiction]

e suppose m € M is still £ree upon termination.
« at least one w € W is unmatched.

* SO w was never proposed to.

« but m proposed to everyone, contradiction.

Claim (bijection). G-S algorithm outputs a perfect matching.
Pf. [by counting]



i

Stability

Claim. [Gale—-Shapley 1962] G-S algorithm outputs a stable matching P*.
Pf. Consider a pair (m,w) ¢ P*:

« if m never proposed to w
« m prefers its G-S partner w’ to w
» otherwise, m proposed to w .
» w must rejected m in the end ==
= w prefers its G-S partner m' to m

m —-—Ww

In either case, current matching is more stable.



i

Quiz: Uniqueness of G-S

Do all executions of Gale—Shapley lead to the same stable matching?

» No, because the algorithm is nondeterministic.

« No, because an instance can have several stable matchings.

» Yes, because each instance has a unique stable matching.

« Yes, even though an instance can have several stable matchings and the
algorithm is nondeterministic.



i

Quiz: Uniqueness of G-S

Do all executions of Gale—Shapley lead to the same stable matching?

» No, because the algorithm is nondeterministic.

« No, because an instance can have several stable matchings.

» Yes, because each instance has a unique stable matching.

« Yes, even though an instance can have several stable matchings and the
algorithm is nondeterministic.

« Nondeterministic? Yes.
» Multiple stable matchings? Yes.

We only show the matching will not change, but is it optimal? How to define optimal?



(Exclusive) Optimality



i

Completely Clashed Preferences

Consider the following preferences:

151: 2I"Id 1 st znd
m w w w m m
m' w w w m m

o {(m,w),(m',w')} is stable:

= both men are happy, so neither would leave their assigned partner.
o {(m',w),(m,w")} is also stable:

= (complementary) neither women would leave their assigned pariner.



i

Completely Clashed Preferences

Consider the following preferences:

1 st 2I"Id 1 st znd
m w w w m m
m' w w w m m

o {(m,w),(m',w')} is stable:

= both men are happy, so neither would leave their assigned partner.
o {(m',w),(m,w")} is also stable:

= (complementary) neither women would leave their assigned pariner.

It's possible for an instance to have more than one stable matching.

« Even possible to say they are equally good?



Valid partner

Def. We say m is a valid partner of w, if there exists any stable matching that
contains the pair (m, w).



i

Valid partner

Def. We say m is a valid partner of w, if there exists any stable matching that
contains the pair (m, w).

1811 2[‘“:' 3I"ll:| 151 End 3":'
A X Y Z X B A C
B Y X Z Y A B C
C X Y Z Z A B C

« Both X and Y are valid partners for A.
« Both X and Y are valid partners for B.
« Zis the only valid partner for C

Can you see the stable matchings?



Best-valid assignment

Def. w is the best-valid partner of m.: if (m, w) is valid, and no one else has a
higher rank than w Is also valid.

* best(m): denote the best-valid partner of m.



i

Best-valid assignment

Def. w is the best-valid partner of m.: if (m, w) is valid, and no one else has a
higher rank than w Is also valid.

* best(m): denote the best-valid partner of m.

M-optimal assignment. S* denote the set of pairs {(m, best(m)) : m € M }.

e |sit a (perfect) matching?
« |S it stable?



i

Best-valid assignment

Def. w is the best-valid partner of m.: if (m, w) is valid, and no one else has a
higher rank than w Is also valid.

* best(m): denote the best-valid partner of m.

M-optimal assignment. S* denote the set of pairs {(m, best(m)) : m € M }.

e |sit a (perfect) matching?
« |S it stable?

Claim. Every executions of G-S yield S*.

« Remember rules in G-S algorithm: only M propose.



i

M-optimality

Claim. Every executions of G-S yield S*.
Pf. suppose one of M matched non-best-valid in S.

1. M propose in decreasing order of preference.
« rejected by best-valid partner.
2. consider the first moment such rejection happened
« Let m: first got rejected,
« Let w: first valid that rejected m,
» must be: w = best(m).
3. Let m': engaged to w when w rejected m,
o x. w prefers m' to m.

m—‘.w



i

M-optimality (cont.)

Claim. Every executions of G-S yield S*.
Pf. suppose one of M matched non-best-valid in S.

1. M propose in decreasing order of preference.
2. consider the first moment such rejection happened
3. Let m': engaged to w when w rejected m,

e . w prefers m’ to m.

m—‘.w



i

M-optimality (cont.)

Claim. Every executions of G-S yield S*.
Pf. suppose one of M matched non-best-valid in S.

1. M propose in decreasing order of preference.
2. consider the first moment such rejection happened
3. Let m': engaged to w when w rejected m,

e . w prefers m’ to m.

1. (m, w) is valid = exists stable match S’ contains it.

1. Let w' be the partner of m' in S’,

2. m' not rejected by any valid partner at the moment.
1. especially, m’ not yet rejected by w’,

3. m’ not yet proposed to w’, but engaged,
1. x:m' prefers w to w'.

4. (m’,w) is an instability in S’, a contradiction.

m—‘.w

M — N

m -—Ww



Exclusiveness of Optimality

M-optimality come at the expense of the other side.

e In §*, each w € W got the worst possible partner.



i

Exclusiveness of Optimality
M-optimality come at the expense of the other side.

e In §*, each w € W got the worst possible partner.

Def. m is the worst-valid partner of w: if (m,w) is valid, and no one else has a
lower rank than m is also valid.

« worst(w): denote the worst-valid partner of w.



i

W-pessimal

Claim. In §*, each w € W is paired with worst(w).
Pf. suppose (m,w) € S*, but m # worst(w).

1.3m/, S : (m',w) € S,
1. w ranks m' even lower,
2. % w prefers m tom’.
2. Letw': (m,w') € S,
1. By M-optimality, w = best(m)
2. x.m prefers w to w'.
3. (m,w) is an instability in S, a contradiction.

m —-—Ww

[Tl o



i

Is it fair?
When preferences clash completely:

» proposing Side got best possible stable matching;
 the other side got worst possible stable matching.

Someone is destined to end up unhappy.



i

Is it fair?
When preferences clash completely:

» proposing Side got best possible stable matching;
 the other side got worst possible stable matching.

Someone is destined to end up unhappy.

The lessen also applies to real life:

« become attractive: reach a higher rank on other people’s preference list
 be active: make sure you, instead of your competitors, achieve optimality



Context



i

Extensions

We made many assumptions in the problem formulation.

« Some agents declare others as unacceptable.
« Some companies have more than one position.
« Unequal number of positions and students.



i

2012 Nobel Prize in Economics

Lloyd Shapley. Stable matching theory and COLLIOR ADMISSION AYD THE STABLLTS OF MARRIAGE
Gale-Shapley algorithm. e < et s

which (1 can sdin & guots of ooy 4 | iviag evilusaesd 1Relr qualefestisag, 1ha
mrimissdnns rfflew mm ceckds whirk nnes ra sdovle T poeeedore ol plecing

 original applications: college admissions and SO Ao o W04 2 WOR SRINOR S S0 sy BN
opposite-sex marriage.
Alvin Roth. Applied Gale-Shapley to matching

med-school students with hospitals, students
with schools, and organ donors with patients.




i

2012 Nobel Prize in Economics

Lloyd Shapley. Stable matching theory and COLLIOR ADMISSION AYD THE STABLLTS OF MARRIAGE
Gale-Shapley algorithm i e

which (1 can pdedd & Guats of ooy 4 ] lavieg avaluaeed thels cualifestiong, the
sl missnss offles momr Cackds whick sees ra sdrls Tre proredore o wlfecing

 original applications: college admissions and SO Ao o W04 2 WOR SRINOR S S0 sy BN
opposite-sex marriage.
Alvin Roth. Applied Gale-Shapley to matching

med-school students with hospitals, students
with schools, and organ donors with patients.

While talking algorithms, it's not just about computer science.



Five Representative Problems



Recap: Problem solving steps

1. formulate problem with enough mathematical precision that:
 pose concrete questions,
« motivate smart solutions;
2. design an algorithm for the problem;
3. analyze the algorithm to:
e prove it is correct,
e give a bound on running time (thus establish efficiency).



i

Milestones

The course is structured by fundamental design techniques.

« learning design patterns helps building your own knowledge database
= organize your KB into categories



i

Milestones

The course is structured by fundamental design techniques.

« learning design patterns helps building your own knowledge database
= organize your KB into categories

» subtle changes in the statement of a problem can have an enormous effect on its
computational difficulty.



i

Milestones

The course is structured by fundamental design techniques.

« learning design patterns helps building your own knowledge database
= organize your KB into categories

 subtle changes in the statement of a problem can have an enormous effect on its
computational difficulty.

» Interval Scheduling: Greedy algorithms.

» Weighted Interval Scheduling: Dynamic programming.
» Bipartite Matching: Network flow.

 Independent Set: NP-complete.

« Competitive Facility Location: PSPACE-complete.



