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Abstract

This paper addresses approximate partial symmetry de-
tection in 3D point clouds, a classical and foundational tool
for analyzing geometry. We present a novel, fully unsuper-
vised method that detects partial symmetry under signifi-
cant geometric variability, and without constraints on the
number and arrangement of instances. The core idea is a
matching scheme that finds consistent co-occurrence pat-

terns in a frame-invariant way. We obtain a canonical par-
tition of the input shape into building blocks and can handle
ambiguous data by aggregating co-occurrence information
across both all building block instances and the area they
cover. We evaluate our method on several benchmark data
sets and demonstrate its significant improvements in han-
dling geometric variability, including scanning noise, irreg-
ular patterns, appearance variation and shape deformation.

1. Introduction
Symmetry detection [22] is a fundamental tool for ana-

lyzing geometric shapes. In this paper we focus on partial

symmetry, where non-trivial parts of a shape can be mapped

to each other under admissible transformations such as rigid

transformations [20, 10, 5]. Our objective is to recognize re-

curring parts, which we refer to as building blocks. We refer

to the set of all mutually matching instances as one and the

same class of building blocks, and permit general, irregular

placements of instances.

Symmetry detection for noise-free geometry is well un-

derstood (see Section 2). Uncorrelated measurement noise

and partial acquisition (as in 3D scans) have also been

handled successfully in literature [20, 5, 23]. However,

it remains very difficult to detect geometry that is similar

in terms of semantics or functionality, but deviates sub-

stantially in geometry. For example, transformation vot-

ing [20, 24] is limited to coarse scale geometric structures

due to the common voting space. Scenes with many in-

stances can only be handled with assumptions such as regu-

larity or hierarchy. As an alternative, feature-graph match-

ing [3, 4] handles more complex transformations, but suf-

fers from unreliable low level features, hence achieve lim-

ited success with strong shape variability. Spectral diffusion

in matching networks [15] helps to cope with ambiguous

data, but does not explicitly identify instances (geometric

covering) and does not perform well with partial symmetry.

The objective of our paper is conceptually simple: We

extract repetitive objects as a collection of consistently co-

occurring features. The challenge is to make it work for

3D data with geometric variability in a fully unsupervised

fashion. There are two key ingredients that make the de-

tection work: invariant features and aggregation of features

response using co-occurrence.

The necessity of having geometric invariance at the fea-

ture level is for handling appaerance variation. However,

it comes at the price of reduced specificity and increased

false positives. We therefore argue the necessity of aggre-

gating information over larger quantities of data to improve

the detection.This is our core contribution: We employ a

novel EM algorithm that iteratively integrates signal over

the mappings between instances (estimation) and over the

area covered by each instance (maximization). In this way

we consolidated the features with the true repetition, which

significantly improved the detection.

In comparison to transformation voting [20, 24, 23] the

new approach has no restriction in the cardinality and place-

ment of the symmetric elements. Comparing to feature-

graph matching [3, 4], it is able to handle much stronger

geometric deformation. Comparing to symmetry factored
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Figure 1. System overview: Input (preprocessed) — Feature Detection (distribution on model and close up look) — Building blocks

detection (constellation visualization) — Detection results (bounding box visualization)

embedding [15], our spectral clustering embeds the distance

between spatial patterns of matched features rather than

single correspondences. We demonstrate that this comes

with significant performance benefits. Unlike most of the

previous methods, our approach optimizes for coherent con-

stellations, therefore outputs building block instances of dif-

ferent classes rather than correspondences (which are often

split into pieces using simple greedy region growing). In

summary, our paper makes two main contributions:

• We introduce consistent co-occurrence patterns as a

novel invariant for improving feature matching in 3D

point clouds.

• Based on this, we develop a novel unsupervised partial

symmetry detector, which outperforms know methods

in case of strong geometric variability.

2. Related Work
Since its introduction to the community by a series of

seminal papers [24, 20, 27, 10], a lot of researches have

been devoted to symmetry detection and its applications.

A recent survey is provided by Mitra et al. [22]. Here we

briefly discuss three categories of related work.

Transformation voting collects pairs of matching fea-

tures and casts votes for transformations that relate them

[19, 24, 17]. Voting methods excel at recognizing approx-

imate symmetry, as exemplified by symmetrization meth-

ods [21]. However, the use of a single transformation space

(marginalizing out locality information) limits detection to

coarse structures. Symmetries of fine details or complex

patterns of many generally placed instances can not be rec-

ognized against structured background noise. The problem

can be alleviated by a restrictive hierarchical decomposi-

tion [19] or by applying additional regularity priors [23].

Our method avoids marginalization of locality information.

We demonstrate in several test scenes that it handles large

quantities and arrangements of instances and recognizes

symmetries in smaller details.

Feature-graph matching avoids the restrictions of the

common transformation space [2, 5]. These methods are

essentially brute-force alignment schemes that use feature

matching for quick rejection of non-matching geometry. Fi-

nal validation is obtained via ICP alignment [8]. However,

the rigidity prohibits recognizing instances that differ by

systematic deformation. Attempts have been made to han-

dle deformable feature graphs [4]; however its performance

were rather limited because the lack of an efficient way to

validate if the conjectured high order patterns have signif-

icant support in the data. By contrast, we use simple pair-

wise relations to aggregate co-occurrence information while

avoiding over-fitting of untrustworthy hypothesis.

Spectral clustering: Lipman et al. [15] use spectral

embedding to recover the latent equivalence relation from

noisy data. This method does not recognize symmetry in

fine details as it relies on larger-scale and fixed-size match-

ing (not optimized to instance-size) as its source of corre-

spondence information. Spectral clustering is extended by

Kim et al. [12] towards shape collections using diffusion in

a sparse matching graph to avoid unreliable long-distance

matches. Mattausch et al. [18] cluster geometric patches

and incorporate co-occurrence to compensate for missing

data. However, they do not aggregate signal from multi-

ple instances, and the feature design is optimized for indoor

architecture (planar patches). Kalojanov et al. [13] detect

building blocks (named “microtiles”); however, their model

cannot handle approximate matching.

Our approach is also related to Liu et al. [16] and Li

et al. [14]. Both detect partial 2D symmetry using co-

occurrence analysis. Our method is different from [16] in

two major ways: First, feature dictionaries are not learned

via direct unsupervised clustering but based on a more

sophisticated EM optimization. Second, we use spectral

clustering instead of greedy searching to link features into

meaningful constellations. Li et al. [14] only consider trans-

lational building blocks from front-view, which permits us-

ing global cross-correlation for detection. This is clearly

problematic in 3D, where co-occurrence must be detected

in local frames that differ from each other rotationally. Fur-

ther, we observe in practice that associating features with

local frames introduces “rotational noise” that increases am-

biguity. This renders the unsupervised discriminative learn-

ing scheme in [14] unreliable. We handle rotational noise

by aggregating information from a whole constellation of
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Figure 2. Left: Tsource→target maps instances of the same build-

ing block class. Right: Tsource→target maps co-occurring fea-

tures in the same instance. The black arrows indicate the local

frame of the source feature.

features in our EM scheme, utilizing the redundancy of the

co-occurring features for improving robustness.

3. The Detection Method
Our method takes a 3D point cloud as input and de-

tects its partial symmetry (Figure 1). We start by build-

ing a feature abstraction of high-curvature regions [5], with

spatial and orientational pooling to gain invariance against

local shape deformation. However, such invariance comes

at the price of reduced specificity, i.e., increased false posi-

tives. We therefore need to integrate information over larger

quantities of data to improve the signal-to-noise level. The

idea is straight forward: we extract each building block in-

stance as a collection of consistently co-occurring features.

While matching individual features is unreliable, aggregat-

ing many feature matches improves the detection. Concep-

tually, two sources of information are useful: we can (i) in-

tegrate over the mappings between instances (Figure 2 left),

and (ii) integrate over the volume covered by each instance

(Figure 2 right). Knowing either the mappings or the in-

stances simplifies the search of the other. However, in prac-

tice we know neither, so this is a chicken-and-egg dilemma.

To solve this problem, we employ an Expectation-
Maximization scheme to find optimal co-occuring constel-
lations of features. We first build a dictionary of relevant

features by k-means clustering, pruned by a sliding-window

detection. We then iterate between (i) the expectation step,

which finds pairwise co-occurring features using current

dictionary entries (words); and (ii) the maximization step,

which updates the words so that the affinity between co-

occurring features is maximized. The output of this EM

process is a dictionary of reliable features (Figure 1, fea-

ture detection). Next, the location of the building blocks

instances and the volume they cover are found by a spectral

clustering algorithm (Figure 1, building block detection).

3.1. Notation

Here we define the notation of building blocks: Let

Q = {Qi}Mi=1 denotes different classes of building blocks

(different repetitive objects). Each class Qi = {qi
j}Nj=1

consists of N instances that can be approximately mapped

to each other under admissible transformations. It can be

represented by transforming any of its j-th instance Qi =
{T i

j→k · qi
j}Nk=1 (Figure 2, left). Without loss of generality,

we denote the set of transformations T i = {T i
1→k}Nk=1 with

qi
1 as the template instance.

Building blocks consist of coherently co-occurring fea-

tures: these features show up in the same constellation for

all instances of the same building blocks class. Such a con-
sistent co-occurrence pattern is an invariant of each build-

ing block class. Let D = {Di}Ki=1 denotes a feature dictio-

nary, where each word Di = {di
j}Nj=1 is a list of matched

features. A pair of features co-occur if their lists of matches,

Di and Dj , are identical after applied the same local trans-

formation Ti→j to every member of Di (Figure 2, right).

That is, Dj = {Ti→j · di}Ni=1. Applying the mapping lo-

cally makes it frame invariant to different instances.

To detect building blocks, one need to identify co-

occurring feature pairs across the data, then assemble the

consistent pairs into instances. Doing so aggregates co-

occurrence information over the set of transformations T i

and the target geometries Qi. Although we know nei-

ther the transformation nor the target geometry, we show

that in practice this problem can be handled by an iterative

Expectation-Maximization scheme.

3.2. Pre-processing

Our input data is a oriented point cloud. We re-sample

the input point cloud using a sample space of ε, which con-

trols the processing resolution and the scale of the detection

(many parameters in this paper have a prefixed ratio to ε, see

Section 4 for details). We sample points with strong (maxi-

mum principal) curvature as salient features. We denote this

feature point cloud by Ω. We then set up a local frame for

each feature for computing its descriptor.

Figure 3. HOC descriptor. From left to right: local geometry, cur-

vature, HOC projected to the tangent plane, HOC projected to a

secondary plane, the final descriptor.

Our descriptor is a 3D variant of the Histogram of Ori-

ented Gradient descriptor [9]: we use curvature as the ana-

log of 2D-image gradients for 3D-surfaces. Such a his-
togram of oriented curvature descriptor (HOC) was first in-

troduced by Kerber et al. [11]. Figure 3 shows an example

of this descriptor, and Section 4 provides implementation

details. Notice our core detection algorithm is independent

of the descriptor design; so it is possible to use different

types of features for different tasks [28, 25].

Next, we build a dictionary D of frequently appearing
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features using K-means clustering. Each word (cluster)

Di = {di
j}Nj=1 consists a list of similar features. We use

the term “word” and “list of matches” interchangeably. The

template ti for each word has the smallest distance to all

other members. We purify each word using a sliding win-

dow filter: features that are too close (less than half of the

HOC descriptor) are excluded.

Figure 4 (left) shows the sliding window response of a

single feature. The response map is imposed onto the orig-

inal geometry. Note the resulting feature response is noisy

(red arrow points at the query feature, and blue arrow points

at a false positive). This is because the strong appearance

variation of the reptile scales is beyond the invariance of a

single HOC descriptor. Simply increasing the size of the

descriptor won’t help, since the feature response will be

blurred. For this reason such a naive feature dictionary is

not reliable for computing building blocks.

3.3. Robust Co-occurring Feature Detection

The core contribution of our paper is to use an itera-

tive EM scheme to enforce pairwise co-occurrence con-

straints in the search of reliable features. Importantly, we

use pairwise relation instead of higher order co-occurrence

for avoiding over-fitting in the unsupervised setting. Our in-

put is the initial feature dictionary D. At each iteration, we

first estimate the co-occurrence relation using exist words,

then update the words so the affinity between the distribu-

tions of co-occurring features is maximized. A summary of

our algorithm is listed in Algorithm 1.

Estimation. The aim is to estimate the probability of

co-occurring features. Given the current feature dictionary,

we first compute the best local transformation Ti→j that

maps Di to Dj , which essentially matches the spatial pat-

tern of the two words. A successful match is found for each

mapped feature Ti→j · di
k that has a close-by neighboring

feature in Dj . We test all transformations that map between

near-by feature pairs in 〈Di,Dj〉, and choose Ti→j as the

one that gives the maximal number of matches. We denote

Ψi,j the set of the source features from the matches.

Next, we compute p(di,dj), the probability density

function (PDF) for a pair of features 〈di,dj〉 to co-occur in

Ω. We first use a voting based method to compute p(dj |di):
For each x ∈ Ω, we predict its counterpart using Ti→j · x,

then add the prediction quality to the PDF. Specifically, we

find all y ∈ Ω that satisfy ||y −Ti→j · x|| < σs, and vote

for each of them with the following probability:

p(dj=y|di=x)=exp

(
−||y −Ti→j · x||

σ2
s

m(tj , y)
)

(1)

Here σs controls the tolerance of mis-match, and

m(tj , y) computes the descriptor distance between the tem-

plate and the prediction. Finally we compute the joint prob-

ability: p(di,dj) = p(dj |di)p(di). Here p(di) is the

Algorithm 1 Detection of Pairwise Co-occurrence Features

Require: Input feature dictionary D, size of dictionary K,

number of iteration M
1: for t← 1 to M do
2: for i← 1 to K do
3: for j ← 1 to K do Estimation:

4: Ti→j = Match(Di
t,D

j
t )

5: for j ← 1 to K do
6: p(dj

t |di
t) = Vote(tjt ,Ti→j)

7: p(di
t,d

j
t ) = p(dj

t |di
t)p(d

i
t)

8: for i← 1 to K do Maximization:

9: p(di
t+1) =

∑K
j=1,j �=i p(d

i
t,d

j
t )

10: di
t+1 = FindPeak(p(di

t))
11: tit+1 = UpdateTemplate(di

t+1)

prior of seeing di in Ω. It is approximated as the spatial

distribution of the word:

p(di = x) ≈
{

1 if x ∈ Di,
0 if x /∈ Di.

(2)

Notice this approximation significantly reduces the com-

putational cost, as we only need to compute p(dj |di) for

x ∈ Di instead of x ∈ Ω.

Maximization. In this step we maximize the co-

occurrence in the detection by updating words. To do so

we recompute p(di) as the integration of all hypothetical

pairwise outcomes: p(di) =
∑K

j=1,j �=i p(d
i,dj), where K

is the size of the dictionary. We then update Di as a new

set of features detected as the local peaks in p(di). Again,

non-maximum suppression is used for detecting the peaks.

Finally, we update the template ti using the new median

feature of the word. The output of this EM process is a set

of more reliable features. Figure 4 compares the feature re-

sponse before and after the EM process: one iteration (Fig-

ure 4 middle) already improves the feature response, and

the result is further improved after five iterations (Figure 4

right).

3.4. Instance Detection

Having found reliable features, our next task is to detect

building blocks instances. From a global perspective, we

identify building blocks using spectral clustering: we first

perform spectral embedding using co-occurrence measure-

ment of pairwise features, then use unsupervised clustering

to extract different classes of building blocks and their sup-

porting regions. Figure 5 shows an example of the process.

We define a co-occurrence matrix M, where each entry

is the affinity between the spatial distributions of a pair of

words (| · | denotes cardinality):
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Figure 4. Feature matching can be improved by the proposed EM algorithm. The heat map encodes the probability of finding a match

(white indicates high probability). Left: single feature based detection (red arrow points at the query feature) is unreliable. For example

there is false positives (blue arrow). Middle: The output after one iteration. The false positive is removed. But missing detection still exists

(blue arrow). Right: The output after five iteration.

Figure 5. Left: Co-occurrence features in the embedded space.

Right: The median of each cluster (blue and red dot) is imposed

onto the input model.

mi,j =
|Ψi,j |

max(|Di|, |Dj |)
(3)

From M we create a low dimensional embedding using

classical multidimensional scaling, where co-occurring fea-

tures are close to each other. We extract modes from this

embedding using mean-shift. This results in M clusters

(M ≤ K), each represents a unique building block class

Qi, i = 1...M . We use the median of each cluster Qi as an

outlier-robust representation of the mode (Figure 5 right).

Finally, we determine the supporting region of each in-

stance. We build a “star model”, which uses Qi as the cen-

ters of the instances, and links co-occurring features to the

centers. To do so, we add an edge for each matched pair of

features from Qi and Dj , where Dj ∈ Qi\Qi. The size

of each instance is approximated by the bounding box of its

internal linked features. Figure 8 show examples of our de-

tection. The bounding boxes of all instances from the same

class are averaged to get a more robust estimation.

4. Implementation Details
Here we describe implementation details of our algo-

rithm. We re-sample the input point cloud using a sam-

ple space of ε, which controls the processing resolution and

consequently the scale of the detection. In practice, we use

different ε for data from different sources. It is set as an

absolute value (0.075) for the Qmulus&TerraMobilita city

scan dataset, and relatively (0.0005 of diagonal length of

the input shape) for the Stanford 3D scanning repository

and the Aimatshape repository. We estimate surface cur-

vature by applying quadratic moving-least-square [1] to lo-

cal neighborhoods of radius 4ε and estimating the curvature

tensor [7], from which we extract the direction of maximum

principal curvature t1 and its magnitude κ1.

Feature point extraction. We sample points with strong

curvature as salient features: A non-maximum suppression

process is performed with a local search radius of 2ε. We

use a threshold on the magnitude of the maximum principle

curvature κ1 > 0.15 to preclude specious local maxima.

Local feature frame. To set up a local frame for each

feature, we use the normal of the query feature as the local

X axis, and the maximum principal curvature as the local

Y axis. The local Z axis is the cross-product of the two.

To resolve the sign ambiguity of the maximum principal

curvature, we set up two different local frames as one is the

180 degree rotation of the other.

Descriptor. We computed the curvature statistics around

the query feature: each nearby sample point is projected

onto the tangent plane. We collect the projected curvature

by 8 orientation bins and 8×8 spatial bins, where each spa-

tial bin has an edge length of 8ε. We also project curvature

onto a second plane that uses local Y axis as the normal.

Such bi-directional projection increases the discriminative

performance with just a modest increase of computational

cost. In total our descriptor has 1024 dimensions. We nor-

malize the descriptor so its L1 norm is one.

Feature Dictionary. The initial dictionary is built us-

ing K-means clustering(K set to 100). During sliding

window detection, we compute the matching score from

the L1 distance between two descriptors: m(x, y) =

exp
(

−|HOC(x)−HOC(y)|
σ2

)
. Here σ = 0.1 is a standard de-

viation parameter that models matching noise. The same

matching function is used in Equation 1. Matches with

score below 0.5 are removed during the non-maximum sup-

pression to avoid spurious local maxima. The threshold is

intentionally set to a relative low value to permit high noise

scenarios and significant geometric variability.

Co-occurring Feature Detection. While matching the

distribution of two features, we restrict the maximum spa-

tial distance between the prediction Ti→j · di
k and its near-

est neighboring feature in Dj to be 8ε (one HOC cell). The

matching process can be speed up by precluding features

that are too far away in the input data: we require the spa-

tial distance between di and dj to be no larger than 64ε.
However, it is still possible to detect instance that are larger

than this size, due to the diffusion power of spectral cluster-

ing. The σs in Equation 1 is set to 16ε. In the maximization
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step, we need to ensure that only reliable pairwise relations

are kept in the EM process: First, we discard weakly co-

occurring feature pairs via a threshold on the cardinality of

Ψi,j . We let this threshold depend on the number of build-

ing blocks expected from the shape: 5 is used for individual

shapes such as the Stanford dragon and 10 is used for city

scans. Second, we filter out weak feature responses dur-

ing the updating of words (maximization step). In practice

we normalize p(dj) so the highest scored feature has con-

fidence of 1, and weak detections are excluded with confi-

dence below 0.25. For efficiency, we use up to 5 iterations

for EM, and terminate the process as long as the dictionary

does not have significant change (number of total features

change is less than 1%).

Spectral Clustering. We perform a 5-dimensional em-

bedding for the affinity matrix M using the classical mul-

tidimensional scaling [26]. For unsupervised clustering, we

use mean-shift with bandwidth of 0.5.

In practice we observe small building block classes (with

fewer instances) can drift towards bigger building classes

due to the template update in Algorithm 1. To solve this

problem, we use an incremental detection scheme based on

a minimal description length (MDL) strategy. The task is

to find the minimal number of building blocks classes that

can describe most of the input data. To do so we run a se-

quence of building block detections. For each round, only

the largest building block class in the result is kept. We

remove features that are covered by this class from the fea-

ture point cloud Ω, so they would have no influence in the

future detection. In this way, the input model is iteratively

decomposed into building blocks of cardinality from big to

small. The result in Figure 6 is produced in this way. In to-

tal we found five different building blocks that can explain

the input model in an efficient way.

We implemented our detection algorithm in C++, and

run with a 2.5Ghz quad-core Intel Core-i7 processor. The

biggest computation bottle neck is the iterative EM process,

and more complex symmetry leads to words of larger cardi-

nality, hence higher computational cost. In practice our im-

plementation takes less than a minute to process each model

in Figure 8, 62 seconds to process “dragon” and 132 sec-

onds to process the model in Figure 6.

5. Evaluation
We conduct a quantitative evaluation on the Qmu-

lus&TerraMobilita city scan dataset [6] and on a set of non-

man-made shapes from the Stanford 3D scanning reposi-

tory and the Aimatshape repository. These data contains

scan noise, irregular structure and/or strong geometric vari-

ability. We compare our method (EM + SC) with rigid

ICP (RigidICP), symmetry factor embedding (Symmetry

Embedding) [15], and our implementation of [16] in 3D

(Grasp). To show the importance of the proposed EM

scheme, we also compare to spectral clustering without

the EM optimization (SC), and to spectral clustering using

[14]’s discriminatively learned features (DL + SC). We pro-

vide precision-recall curves for both datasets (Figure 9 a-b).

Like [16][14], we conduct a pressure test by varying the

minimum overlapping ratio for instance matching and re-

port the results in Figure 9 c-d.

5.1. Dataset

Previous work on partial symmetry detection mainly use

qualitative evaluation as very few dataset provides ground

truth annotations. We use our own iterative tool to create

ground truth annotation: a user first paint a piece of ge-

ometry as the template for query, then find other instances

using rigid ICP. Since rigid ICP does not work with strong

geometric variability, the user often first over-decompose

the data into rigid pieces and then merge them by seman-

tics. For example, windows of different sizes and styles

will first be labeled as different classes, then merged into

a single “window” class. We uniformly partition the en-

tire Qmulus&TerraMobilita dataset into 96 scenes, and per-

form annotation for each scene. There are three common

building block classes across the entire dataset: window, car

and balcony. Other smaller classes represents unique street

furniture and building decorations. For the non-man-made

shapes we annotate individual model, and the classes vary

from model to model: for example the model “Dragon” has

classes “scale” and “craws”; and the model “Buddha” has a

single class for the decorative pattern on the cloth.

5.2. Methodology

We quantify the results using the standard precision and

recall (PR) analysis and an additional stress test described

in [14]. Like [28] we match 3D bounding boxes of the in-

stances from the detection and the ground truth annotation.

Let |D| and |G| denote the number of different building

block classes detected/annotated. We define a symmetric

matching score between two classes Dj ∈ D and Gi ∈ G:

score(Dj ,Gi) = min(|Dj ∩Gi|, |Gi ∩Dj |) (4)

where X ∩ Y denotes the set of bounding boxes in Dj

that overlap with Gi. Taking the minimum makes the score

symmetric and avoids over-counting objects that have mul-

tiple intersections. This matching score can be computed

for all possible assignments between the detected classes

and the annotated classes. We define precision as the num-

ber of matched instances in D divided by the total number

of instances in D:

precision =

∑|D|
j=1 maxi=1..|G|(score(Dj ,Gi))∑|D|

j=1 |Dj |
(5)
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Figure 6. Here we find windows (red) and cars (blue) in the initial detection. We also find balconies (dark yellow) and two classes of

smaller windows (with and without the dormer) as the green and the bright yellow building blocks in the late MDL iteration.

Notice each class Gi has its own matching score for Dj ,

and only the highest score, maxi=1..|G|(score(Dj ,Gi)), is

kept for Dj . We compute recall in a symmetric way by

swapping the D and G terms in Equation 5. Like [14],

we generate a PR curve by successively removing building

block classes from the detection and simultaneously updat-

ing the recall and precision. Starting from the largest class,

we remove one class at a time until no class remains. The

final PR curve in Figure 9 is the average of all scenes.

We perform a stress test by incorporating a threshold of

minimum overlapping ratio in Equation 4. Figure 9 a-b are

generated using threshold 0.125, meaning there is on av-

erage half overlapping for each bounding box dimension.

Increasing the threshold from zero to 0.5 creates the F-

measurement v.s. pressure curves as shown in Figure 9 c-d.

5.3. Results

We first dicuss the PR curves of different algorithms

(Figure 9 a-b). The baseline is a supervised detection us-

ing rigid ICP (purple). For each class in the ground truth,

we perform a sliding window detection using the template

from user annotation. The resulting low F-scores (0.55 and

0.48 on different datasets) indicate strong geometric vari-

ability can not be captured by rigid matching.

Symmetry factored embedding (pink) [15] computes the

symmetry factored distance between the input data and its

transformed copy. We use the symmetry factored distance

to embed features and apply spectral clustering (with 10

clusters). Doing so produces an feature point cloud seg-

mentation. We “cut out” individual instance using a 26-

connected 3D region growing. This also produces very low

F-scores (0.48 and 0.45 on different datasets), indicating lo-

cal diffusion can fail in detecting complex partial symmetry.

Next we test our 3D implementation of [16] (Orange),

which uses stochastic search to find correlated features. We

implement their search algorithm with our 3D HOC fea-

tures, and observe a significant improvement (F-score 0.63

and 0.60) over the baseline. However, there are still many

false detections. The reasons are three folds: First, unsuper-

vised clustering usually produces inaccurate low level fea-

tures; second, inaccurate features can not be traced due to

the lack of iterative refinement; third, their search algorithm

is greedy and the use of average affinity as the optimizing

objective biases the result towards false negatives.

In contrast, our algorithm with EM optimization and less

greedy spectral clustering (red) is able to significantly im-

prove the performance. It achieves F-score of 0.74 on the

Qmulus&TerraMobilita dataset and 0.68 on the non-man-

made dataset. We also test intermediate results of our algo-

rithm by dropping the EM optimization (SC, blue). Doing

so significantly drops the performance (0.58 and 0.54). This

indicates spectral clustering indeed requires reliable input

features. We also test the discriminative learning scheme

from [14] (DL + SC, green), which trains a one-vs-all linear

SVM for each feature. However, in our experiment this only

gives marginal improvement over [16], due to the additional

frame noise for computing the feature descriptors. Figure 7

show a qualitative comparison between different methods.

The same conclusion can be seen from the pressure tests

(Figure 9 c-d). This again proofs aggregating consistent co-

occurrence information from data improves the signal-to-

noise level in the feature matching, and consequently bene-

fits the final detection of building blocks.

Figure 8 shows our detection handles different chal-

lenges. Figure 8-a shows it handles scanning noise; Figure

8-b shows it detects irregularly placed instances. Figure 8-

c is a very challenge case, where the windows have very

strong geometry variability. Nonetheless, our algorithm is

able to identify most of them as the same class of build-

ing blocks. Figure 8 d-f are examples of our detection on

non-man-made shapes.

6. Limitation and Future work
Our method could be improved at both the feature level

and the structural level. Figure 10-a shows missing detec-

tion due to strong deformation that is beyond the invariance

of HOC features. Figure 10-b shows the lack of curvature

in the data leads to non-discriminative features. In this case

our method failed to separate building blocks from the back-

ground noise. Using the entire shape for symmetry detec-
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a) Symmetry Embedding b) Rigid ICP c) Grasp d) SC e) DL + SC f) EM + SC
Figure 7. Detection results of different methods.

Figure 8. Detection results of different challenges.

a) Qmulus&TerraMobilita b) Non-man-made shapes c) Qmulus&TerraMobilita d) Non-man-made shapes
Figure 9. Quantitative evaluation of our method. a) and b) are precision-recall curves on different datasets. c) and d) are pressure tests with

different settings of overlapping ratio.

tion works better here as shown in [15].

On the structural level, our method detects general re-

occurrence patterns instead of any specific forms of sym-

metry, such as reflective symmetry or lattice structure. This

has been proved to be flexible while, to our best knowl-

edge, none of the other specific methods works as general

as ours. However, due to the lack of high level constraints,

our method is less accurate when the noise level is too high:

Figure 10-c shows miss-detections due to strong variance of

data sampling density, and Figure 10-d shows mis-aligned

building blocks. In these cases, reflective symmetry or lat-

tice structure can be used to improve the results.

Last but not the least, our current implementation is not

optimized for directly running on a big dataset. There are

two main bottle necks: First, it does not scale well with the

size of the scene due to the heavily used pairwise match-

ing. Second, as the complexity of the scene increases, the

matching of feature distributions also needs to be performed

in a higher dimensional space. The consequence is that

co-occurrence signal becomes more difficult to detect due

to the curse of dimensionality. For example, small classes

may drift towards big classes. In this paper we use a MDL

based approach to handle such problem for partitions of big

data. In the future we will investigate the scalability of our

method in a more principled way.
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a) Deformation b) Weak Feature c) Reflection d) Lattice
Figure 10. Limitations of our methods.

7. Conclusion

We have presented a new method for a classical prob-

lem – partial symmetry detection. The main contribution

is to use consistent co-occurrence patterns as a novel in-

variant for improving feature matching, and based on it a

novel detection algorithm that achieves robustness against

ambiguous data by aggregating co-occurrence information

across all building block instances and the volume they

cover. Experiments show that our detection outperforms

previous methods on data with strong geometric variability

and irregular instance distributions. Our approach suggests

a number of future work for improvement at both the feature

level and the structural level. It also opens new application

possibilities, for example structural aware shape synthesis.
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