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Abstract

In this paper, we propose a new method for reconstructing 3D models from a noisy and incomplete 3D scan and a coarse

template model. The main idea is to maintain characteristic high-level features of the template that remain unchanged for

different variants of the same type of object. As invariants, we chose the partial symmetry structure of the template model under

Euclidian transformations, i.e. we maintain the algebraic structure of all reflections, rotations and translations that map the

object partially to itself. We propose an optimization scheme that maintains continuous and discrete symmetry properties of this

kind while registering a template against scan data using a deformable iterative closest points (ICP) framework with thin-plate-

spline regularization. We apply our new deformation approach to a large number of example data sets and demonstrate that

symmetry-guided template matching often yields much more plausible reconstructions than previous variants of ICP.
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1. Introduction

Content creation has become one of the main challenges of contem-

porary computer graphics: While numerous techniques are known

for representing and rendering complex scenes, the creation of the

3D models itself is still a tedious task that requires artistic skills and

a high level of technical expertise. Broadly, we can distinguish two

approaches:

One option is to create virtual objects from scratch using 3D

modelling software. In this domain, a lot of recent research has

focused on making editing more efficient [MWZ*13]. The main

idea is to define a structure model that characterizes properties

common to a larger class of similar shapes and detect and maintain

such structural properties in shapes during interactive editing.

A second alternative is to perform 3D scanning to create virtual

replicas of real-world objects. However, this requires that a physical

object that closely matches our requirements is available. Even then,

the scanning approach itself is troubled by data quality issues: Any

optical acquisition method suffers from occlusion problems so that

the scanned object is usually only captured partially. Furthermore,

noise, structured outliers and inaccurate registration trouble the pro-

cess, in particular for inexpensive consumer equipment, such as the

Microsoft KinectTM [IKH*11].

Our paper addresses some of the problems that arise when uti-

lizing 3D scanning for content creation. Our approach is based on

the observation that large collections of 3D shapes are available in

libraries such as Trimble/Google 3D WarehouseTM. If the library di-

rectly provides what we need, we are of course all set. However, this

is not likely because shape spaces of non-trivial classes of shapes

(such as furniture, household items, etc.) are high-dimensional and

usually have more degrees of freedom than a shape library can

reasonably sample. Thus, it is quite likely that the shape that we

actually want to acquire is still quite different in geometry from

any readily available model. It is much more likely that we can

find a template model that does have a different geometry but that
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is still very similar in structure: For many classes of objects (in

particular, man-made shapes) there are high-level structural invari-

ants that are shared among large sets of geometry of related func-

tionality [MWZ*13].

The goal of our paper is to utilize structure priors to better adapt an

existing template model to scanned data with only a small amount of

user intervention. When successful, this addresses the problems with

3D scanning discussed above: The template will fill in acquisition

holes, suppress noise and outliers, and we can potentially transfer a

handcrafted, well-designed 3D mesh to the unstructured point cloud

data of the scanner [KS05].

Our structure model is based on symmetry: We leverage previous

work to automatically detect all partial extrinsic Euclidian sym-

metries of the template shape, including continuous and discrete

symmetries [MGP06, PMW*08, BWKS11]. We then deform the

template using a smooth free-form deformation but maintain the

detected symmetry structure as an invariant: Whenever two parts of

the geometry had originally been related by a rigid transformation,

this must still be the case in any deformed variant of the shape.

We propose a new optimization algorithm that formulates

symmetry-aware shape deformation as a quadratic energy (co-

rotated according to latent transformation variables) that combines

a standard thin-plate spline (TPS) regularizer with symmetry preser-

vation.

Conceptually, our method is based on previous work in structure-

aware shape deformation [KSSCO08, HMC09, GSMCO09,

ZFCO*11, WXL*11, BWKS11, BWSK12]. We make two impor-

tant conceptually novel contributions: First, our technique is based

only on the very basic assumption of preserving the algebraic sym-

metry structure of the partial Euclidian symmetries of a 3D shape.

Formally, this is captured in a novel formulation as commutativity

of deformation and pairwise symmetry transformations. Secondly,

to the best of our knowledge, we present the first technique that uses

symmetry-aware deformation for template fitting to noisy scanner

data, which facilitates the creation of high-quality 3D meshes from

even low-quality 3D scans.

We evaluate our method by studying a number of practical ex-

amples of shape acquisition tasks. We acquire 3D shapes at varying

quality levels using KinectFusion [IKH*11] and afterwards use tem-

plate models of different levels of complexity to improve the raw

scanner data. We compare against previous baseline methods such

as deformable iterative closest points (ICP) and previous structure-

aware deformation models. We obtain more plausible reconstruc-

tions, in particular in partial scans with a lot of missing data and

scans with high noise level. We believe that our method provides a

valuable tool for incorporating structural knowledge from templates

into 3D scans.

2. Related Work

A number of structure models have been proposed in literature, as

well as algorithms for maintaining them under shape alterations.

In the following, we review such previous approaches, with an

emphasis on deformation models, template fitting and database-

driven methods.

Deformation models. Shape deformation has a long tradition

in computer graphics. Suitable deformations can be computed by

explicitly constructed basis functions [JSW05, JMD*07, LLCO08,

BCWG09] with suitable smoothness properties or alternatively by

variational methods, such as elasticity models [TPBF87, BS08].

We use a variational TPS framework [ACP03, BR07] as basis for

our method that aims at general smooth deformations, which we

subsequently augment with a new model for preserving algebraic

symmetry structure.

Structure-aware deformation. A seminal approach for

structure-aware deformation was seam carving [AS07], retarget-

ing images for different aspect ratios. Kraevoy et al. [KSSCO08]

propose a similar idea for geometric objects: Their method performs

slippage and curvature analysis to determine how vulnerable a piece

of surface is with respect to stretch in the direction of the three coor-

dinate axes. The method, however, is strictly limited to axis-aligned

resizing.

The iWires system [GSMCO09] proposes a more general set

of structural invariants. The model preserves non-local properties,

including symmetry, parallelity and similarity to basic geometric

shapes such as circles. Huang et al. [HMC09] propose similar ideas

for 2D images. Our approach is strongly inspired by this previ-

ous work. However, unlike iWires, our method is solely based on

symmetry assumptions.

This yields a very simple, variational framework that, unlike the

original iWires, can be adapted for our application of template regis-

tration. Furthermore, while our method covers symmetry more com-

pletely, other geometric relations are not captured, such as parallelity

or right angles in non-symmetric shapes (in symmetric shapes, par-

allel lines and specific angles, such as 60◦, 90◦, arise automatically

from symmetry constraints).

More recently, Bokeloh et al. [BWKS11, BWSK12] use trans-

lational symmetry invariants to generalize the resizing method

of Kraevoy et al. [KSSCO08]. The method supports topological

changes (inserting and removing repeating elements) but is limited

to translational resizing. Our approach is complementary to theirs:

We support general Euclidian symmetry (including rotations and

reflections) but we remain in the domain of homeomorphic defor-

mations, i.e. we perform a continuous deformation that keeps the

original object topology. In this setting, we can formulate our ob-

jective as a simple co-rotated least-squares problem and we do not

require complex discrete optimization.

Recent work on smart deformation tools also includes the method

of [CM09], which resizes objects using retargeting of geometry

images, and [XWY*09] that try to guess joint properties to build

a semi-articulated deformation model. [WXL*11] and [ZFCO*11]

have proposed two symmetry-based mesh editing techniques that

examine symmetry relations in order to derive modification rules.

In general, we have to emphasize that all of the deformation

models cited above have been employed for user-guided shape de-

formation; the aspect of regularizing deformable shape matching is

a novel contribution of this paper.

Editing by part-based assembly. Some approaches for

structure-aware editing are not using deformation but explore
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combinatorial rules for reassembling 3D shapes [Mer07, BWS10,

JTRS12, KCKK12]. Several of these part-based editing systems rely

on databases of 3D shapes to retrieve a suitable part. [CKGK11] even

take the semantic relationships of parts into account. User interac-

tion [FKS*04], [PMG*05] is a viable approach in this area. Our

work focuses on continuous deformation; part-based reconstruction

is currently out of scope.

Structure-aware template fitting. A given template mesh can

be deformed to be fitted to input data (such as laser scans,

photographs or videos) to repair topology and geometry of am-

biguous data [KS05]. This is achieved by combining the ICP

approach with a suitable deformation model [HTB03, ACP03,

PMG*05, KS05, BR07, WJH*07, ARV07]. General deformable

ICP approaches often suffer from overparametrization and the local

smoothness constraints typically fall short in preserving the char-

acteristic global structures of the object. This issue is addressed

by template fitting approaches that only consider a certain class

of objects, such as the class of faces [BSVS04] or human bod-

ies [ASK*05, HSS*09], and, consequently, can rely on a model-

specific low-dimensional parametric shape space. In a more general

approach, [XZZ*11] utilize the component-wise deformation ap-

proach by Zheng et al. [ZFCO*11] to fit a template to photographs.

Recently, a part-based approach was introduced which reconstructs

a 3D model from very noisy and incomplete 3D point clouds via

part-based assembly [SFCH12]. Here, individual parts of the as-

sembly are kept rigid, whereas our approach allows non-rigid de-

formation. A direct reconstruction method that conjectures sym-

metries in order to complete shapes has been proposed by Thrun

and Wegbreit [TW05]. It does not use template geometry but ex-

amines how visibility and geometry are consistent with different

symmetry hypotheses. This is fully automatic, however, the lack of

a template provides less control and the lack of a deformation model

means that the method cannot provide structure-aware editing of the

results.

Scan processing. Kim et al. [KMYG12] have demonstrated an

approach to acquire indoor environments from single-view scans

using primitive-based 3D models from a separate learning stage.

In [KMHG13], they introduce a shape descriptor for user guidance

in interactive scanning. These approaches are orthogonal to our

algorithm and could serve in a pre-processing stage, in order to

extract suitable input from large-scale data and to select template

models automatically.

Surface reconstruction. GlobFit by Li et al. [LWC*11] aug-

ments a local primitive detection approach for surface reconstruc-

tion based on random sample consensus by enforcing global rela-

tions between the primitives. Our method is not limited to models

consisting of basic primitives.

3. Overview

Let S ⊂ R
3 denote the template model that is the input to our al-

gorithm. For simplicity, we assume that S is given as a triangle

mesh (of arbitrary topology), but it is rather straightforward to gen-

eralize our method to other input representations. Furthermore, let

D = {d1, ..., dn} ⊂ R
3 denote the input data obtained from the 3D

scanner, modelled directly as an unstructured cloud of 3D points.

To(P)

f (P)

T f
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f f

P To To To

T f

T f
T f

f (P)

f
f f

f

Figure 1: Two types of symmetry constraints. Left: the basic con-

straint assures that two pieces of geometry are identical up to a

transformation Tf ∈ G. Right: by sharing latent transformations

Tf among multiple instances, regular patterns can be modelled.

Given a number of external deformation constraints, manually

defined or derived from a set of target data points D, our approach

allows to estimate an optimal deformation of the 3D surface S

while keeping its high-level characteristic surface properties intact.

The high-level structure is modelled as the discrete and continuous

symmetries of the template.

Symmetry is defined with respect to a group of admissible trans-

formations G, consisting of homeomorphisms (bijective, in both

ways continuous mappings) T : R
3 → R

3. In this paper, we con-

sider the group of Euclidian transformations G = E(3), i.e. transla-

tions, rotations and reflections.

Given the template S, we are trying to estimate an output surface

f (S) that has the same algebraic symmetry structure. This means

that f (S) might have a very different geometry but the symmetries

To of S and their mutual relations should be preserved: If two sub-

meshes P,Q ⊆ S are symmetric, then the same should hold for the

respective output surfaces f (P), f (Q). The output surfaces might

have very different geometry and a different transformation Tf re-

lating the two submeshes, though. Likewise, the relations between

symmetries should be preserved: For example, if a number of sym-

metric parts are aligned on a regular grid, this structure should still

be present in the deformed model. These two types of symmetry

constraints are illustrated in Figure 1. We use the term ‘algebraic

symmetry structure’ to capture the notion that we only preserve

the fact that geometry is related by a Euclidian transformation (in-

cluding equality of the transformations involved) but do not fix the

concrete mapping itself.

In the following, we present our framework: First, we describe

our deformation model (Section 4). Then, we introduce our notion

of symmetry and describe the symmetry detection pipeline (Sec-

tion 5), followed by design choices and implementation strategies

(Section 6), results (Section 7) and the chosen parameters (Section 8)

We discuss the limitations of our approach (Section 9) before con-

cluding the paper.

4. Deformation Model

The basis of our method is a free-form deformation model, which

we extend subsequently to incorporate symmetry preservation. The

c© 2014 The Authors
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deformation model itself (Sections 4.1–4.3) is not novel—we lay

out the details here for completeness. In principle, our method could

be combined with the majority of variational deformation models

in literature. The novelty is the addition of symmetry constraints in

Section 4.4.

4.1. Representation

In order to compute a deformation, we embed the surface S into a

volumeV ⊂ R
3,S ⊂ V and deform this volume using a deformation

field f : V → R
3. This approach has the benefit of making the

deformation independent of the representation of S so that arbitrary

types of input geometry and general surface topology can be handled

easily. Following [HSL*06, SSP07], we use a subspace method to

discretize the deformation field f . We create a number of nodes

u1, ..., uk ⊂ R
3 and centre radial basis functions b around these to

define the deformation field:

f (x) =

K
∑

i=1

ũi b(||x − ui ||). (1)

Here, ũi ∈ R
3 are the displaced positions of the nodes ui . As

radial basis functions, we used uniform cubic tensor-product B-

splines that provide second-order smoothness with minimal support.

We have also experimented with radial basis functions created from

Wendland functions. They yield visually identical results; adjusting

the spacing for minimal overlap was more difficult, causing higher

computational costs.

We place the nodes by discretizing S to a regular grid of user-

specified spacing ǫgrid. Then, we add additional grid points such that

every surface point is overlapped by four B-spline functions in x-,

y- and z-directions to obtain a valid B-spline basis. This guarantees

that the basis functions and their derivatives are well defined on S.

The deformation field f is estimated using a standard variational

approach: We setup an energy function E(f ) that is minimized by

an optimal f .

E = λcEc + Ed + λrEr + λsEs. (2)

The energy consists of several terms which model separate as-

pects: Ec (handle constraints) and Ed (ICP-like constraints) describe

external deformation constraints, Er is the TPS regularizer that en-

courages smoothness, Es preserves similarity of symmetric parts

as well as similarity of transformations in regular structures. Each

term is weighted by a parameter (λc, λr, and λs) to control its in-

fluence relative to the ICP-like constraints. The unknowns of the

minimization are the displaced node positions x̃i that constitute f .

In addition, we will also introduce additional latent variables (i.e.

variables that are derived implicitly from the context) that model

the transformations later.

4.2. External deformation constraints

Handle constraints. The first energy term Ec accounts for manual

user constraints. We use the standard handle model [BKS03, BK04]

which imposes a series of position constraints Ci = (pi, qi) by spec-

ifying a one-to-one mapping between an initial point p on S and a

target point D Point:

Ec(f, C) =
∑

Ci∈C

‖f (pi) − DPointi‖
2. (3)

ICP-like constraints. The data term Ed of Equation (2) ensures that

f is formed in a way that makes S match the target surface D. This

is achieved by formulating a series of ICP-like constraints [HTB03,

WJH*07] between S and D:

Ed(f,D) =
∑

di∈D

wi

〈

f (pj ) − di, ni

〉2
, (4)

with w being a weighting factor that penalizes outliers, p a sample

point on S and n the normals corresponding to d. The closest point

index j is selected in a way that makes pj the point in S closest to

di .

4.3. TPS deformation model

The regularizer term Er of Equation (2) governs the structure of the

deformation field where it is underconstrained. We use a standard

formulation based on a TPS deformation model [ACP03, BR07]

which discourages bending in S:

Er(f ) =

∫

V

‖Hf (x)‖2
F dx, (5)

with Hf (x) the Hessian matrix of f at position x, and ‖ · ‖F the

Frobenius norm. This TPS energy encourages smoothness by pe-

nalizing second derivatives.

4.4. Preserving symmetries

We now augment the TPS deformation model such that it preserves

the shape of symmetric parts. We formulate a constraint that two

piecesP,Q ⊆ S should be symmetric according to a transformation

from G:

Es

(

f, Tf | P ∼ To(P), To

)

=

∫

P

‖Tf f (x) − f (Tox)‖2 dx. (6)

This energy has four arguments (two constants and two unknowns):

f is the unknown deformation. To the original (known) transforma-

tion that maps a fixed piece P ⊆ S to To(P) ⊆ S, in the original

model. Accordingly, Tf is an unknown transformation that matches

the deformed versions, i.e. mapping f (P) to f (To(P)). This latent

variable is only computed implicitly in order to optimize for best

symmetry preservation and minimum deformation.

The setup is illustrated in Figure 1 (left) in a commuting diagram:

In order to preserve the original symmetries To, the deformation

function f must commute with any symmetry transformation T in

the regions of S that are symmetric. In other words, f must provide

the prescribed symmetry already. If we required a strict preservation

c© 2014 The Authors
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of the original symmetry transformations To, we would strongly re-

strict the deformation to maintain all original symmetry properties

(absolute rotation axes and reflection planes in space, relative dis-

placements and rotations, etc.). Thus, we only aim at preserving

the algebraic structure of the symmetries. This means, it becomes

permissible to replace To with a new (yet to be determined) cor-

responding transformation Tf when moving it out of the argument

of f (·) to the outside. In Figure 1 (left), this means that the paths

Tf ◦ f and f ◦ To must lead to identical results. Equation (6) pe-

nalizes violations of this commutative behaviour in a least squares

sense using an integral, transfinite constraint that covers the domain

P ⊆ S that is symmetric.

We will use this constraint in two flavours: First, for simple pair-

wise symmetries, we employ Equation (6) as is to enforce a similar

shape. Secondly, for complex patterns where a group of transfor-

mations is generated by a small set of generator transformations, as

shown in Figure 1 (right), we use shared transformation variables Tn.

For example, if n shapes Pi , i = 1..n have originally been aligned

on a regular grid, we would constrain all f (Pi) , i = 1..n − 1 to

be symmetric to f (Pi+1) under the same transformation Tf . In

Section 5.1, we describe in more detail how symmetry groups are

identified.

Solving the system. If all transformations are known, Equa-

tion (6) is a quadratic energy. In this case, we can just determine

the gradient with respect to the ũi and add the resulting linear ex-

pression to the linear system obtained previously. In other words,

we co-rotate the linear system with the latent transformations. The

linear system is solved using simple, plain conjugate gradients.

In order to solve for the unknown transformation Tf , we again

use an iterative approach. We start with Tf = To and solve the

linear system. Afterwards, we perform shape matching between

f (P) and f (Q) to estimate a new transformation. As we know the

correspondences through f , this is very easy: We first fit a least-

squares optimal affine map and then perform a polar decomposition

of the linear part to project it back to E(3). In case that multiple parts

Pi correspond under the same, unknown transformation Tf , we can

apply the same principle. The only difference is to compute the least-

square fits to the difference vectors between all pairs {i, i + 1}, not

only a single pair.

5. Symmetry Detection

We now have a numerical tool to express symmetry of geometry

(by using symmetry constraint energy terms Es) as well as the simi-

larity of transformations (by sharing latent transformation variables

among Es terms). This requires analysis of the symmetry structure

of the input and determination of a set of symmetry constraints.

5.1. Structuring the symmetries

Symmetry. We denote the set of symmetries extracted from S with

respect to a symmetry transformation T ∈ G as

ξ (T) := {x ∈ S | T(x) ∈ S}. (7)

In other words, we intersect the object with a transformed version of

itself in order to find symmetric parts: ξ (T) = S ∩ T(S). In order to

Figure 2: Left: A cube is symmetric under rotations by 90◦ (red

arrows) and mirroring (blue arrows) across the main axis. The 48

configurations form the full octahedral symmetry group [Mil72].

Right: Multiple transformations map symmetric subsets to each

other in a grid of symmetric pieces.

avoid spurious matches, we exclude results where the area of ξ (T)

is too small.

Symmetry groups. We formulate our analysis in terms of sym-

metry groups [MPWC13]. Let P ⊆ S be a fixed piece of geometry

and T ⊆ G be a set of transformations that map P back to S. We

denote the geometry created by applying these transformations as

PT :=
⋃

T∈T

T(P). (8)

If T is closed under multiplication, i.e. any product of elements is

again element of T , the 3D object PT forms a symmetry group:

It is globally symmetric under the group action of any T ∈ T . An

example for such a symmetry group is a cube, as shown in Figure 2.

It is symmetric under 90◦ rotations and mirroring along all axes.

We often do not observe full symmetry groups but only excerpts,

such as the ones shown in Figure 2. In particular, no finite transla-

tional symmetry group exists. Therefore, we interpret T as a subset

of a larger, non-observed proper symmetry group T ′ whenever at

least three repetitions of a transformation are found [BWKS11].

Euclidian symmetry groups. Euclidian symmetry is very well

understood; a full classification of all subgroups of E(3) is well

known [Hah02]. There are discrete and continuous groups: The

discrete groups consist of a countable set of transformations, be-

ing generated by between 1 and 3 rotations and/or translations, as

well as additional involutions (i.e. reflections/rotations by 180◦).

In the continuous case, the generators can include instantaneous

motions [GG04].

The symmetry groups are implicitly captured by computing all

pairwise transformations within S; each element of the group will

show up once in a pairwise match. Nonetheless, it is useful to

explicitly compute the groups and use them in the optimization.

Whenever a structure is generated by a small set of generating

transformations, we only enforce symmetry under the action of the

generators using Equation (6). In Figure 1 (right), this means that we

only constraint the left three elements being mapped to the right three

under a single pair of transformations To, Tf in the source/target

domain, respectively. This has two effects: First, this still ensures

that the full symmetry group is preserved, because the generators are

c© 2014 The Authors
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sufficient to establish the whole group (because the area overlaps,

all further transformations are constrained implicitly). In particular,

all the transformations that generate the same group are implicitly

represented by the same transformation variable (as motivated in

Section 3, and Figure 1, right). Secondly, this construction also

makes sure that complex group structures (such as a large grid) have

the same weight as simple, pairwise symmetries (such as a simple

reflection). Without factoring complex groups into a minimal set

of generators, the weight of the resulting least-squares constraints

would increase because of the many resulting pairwise constraints.

As a side effect, the computation costs for building the system matrix

are reduced considerably because redundant pairwise constraints do

not need to be processed (Figure 2, right).

5.2. Symmetry detection

We use a symmetry detection algorithm closely following the

method previously described in [BWKS11]. However, we extend

the algorithm to also output rotational symmetry groups. Conceptu-

ally, this does not make the detection algorithm more challenging.

As described in their paper, we detect discrete translational, re-

flective and (now also) rotational symmetries by matching edges

in the triangle mesh. These matches yield potential generators that

are first fused into 1-parameter groups {TZ} and later into more

complex structures. For continuous symmetries, the approach uses

slippage analysis [GG04]. Because detecting rotational slippage in

meshes is brittle, with difficult thresholding problems, we rely on

discrete rotational symmetries of the mesh to detect these. The re-

maining translational slippage properties (colinearity of mesh edges

and coplanarity of mesh faces) are detected directly by comparing

normals in the triangle mesh. The two main limitations of this ap-

proach are that we (i) need a triangulation where non-flat edges are

consistent with the rotational symmetry (thus excluding scanner data

as templates) and (ii) we will only obtain cylindrical symmetries for

spheres (if the meshing is consistent with that). It is important to

note that symmetry detection is not a contribution of this paper;

many alternative strategies for this task (such as [MGP06, GCO06,

PMW*08, BWSK12]) could be applied as well.

Post-processing. Two filters are used to avoid spurious matches:

First, in case the algorithm reports mostly overlapping area with

groups where one is a subset of the other, we delete the smaller one.

Secondly, very small regions of symmetry, below 0.025 area units

for a scene scaled to a unit-bounding box, are discarded to avoid

spurious matches. Furthermore, area is only reported as discrete

symmetry when it is enclosed by sharp boundaries, as computed by

region growing from the discrete feature that triggered the detection.

This avoids ghosting artefacts where discrete symmetries bleed into

continuous ones: For example, a pair of chairs on a ground plane

report only the chairs, not also part of the plane as being symmetric.

The plane is nonetheless reported as a continuous symmetry. Sample

detection results for several data sets can be found in Figure 3.

6. Implementation

We now combine the variational model of Section 4 with symmetry

information (Section 5) to build a symmetry-aware deformable ICP

algorithm.

ReflectiveDihedralDihedral

ReflectiveReflectiveReflective

DihedralReflective RotationalReflective

Figure 3: Symmetry detection results for the DSLR camera (first

and second row), office chair (third row, left), and small fan (third

row, right) template meshes. Only the points comprised by the re-

spective symmetry are rendered over the grey model backdrop. The

reflection planes of the reflective symmetries are depicted in red.

The rotational symmetries are depicted by the rotation axis in blue

and a small arrow indicating the rotation. For dihedral symmetries,

the reflection planes are also shown in blue.

ICP-like constraints. In order to perform deformable ICP, we

maintain a current estimate of the deformed template (initialized

by a manual rigid alignment with scaling). For each data point, we

compute the closest surface point in the current deformed template

shape and create a least-squares point-to-plane attraction constraint

employing Equation (4). The surface normal of the scanner data is

estimated by a plane fit of the 20 nearest neighbours based on prin-

cipal component analysis. In addition to these forward constraints,

we can optionally also include backward constraints, where we

exchange the role of template and data. Backward constraints are

useful if the data are almost complete. For partial data, only forward

constraints can be used.

Pruning for robustness. We also prune implausible correspon-

dences to make the algorithm more stable, in a two-stage test: We

first remove constraints whose distance ‖f (p) − d‖ is above the

tdth percentile of all distances. The parameter td has to be chosen

by the user according to the expected amount of outliers. Secondly,

to avoid oscillation, we use a threshold tnf to determine whether a

constraint is located in the near field. We do not remove constraints

with a distance below tnf even if their distance lies above the tdth

percentile.
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As ICP itself is not the focus of this work, we keep our imple-

mentation rather basic; more sophisticated correspondence filtering

methods can be found in [RL01].

Basis functions. We use linear basis functions during the initial

iterations, followed by a final update using smooth B-spline basis

functions. As B-splines have a support of four intervals, requiring

43 = 64 matrix entries per constraint, while linear functions only

require 23 = 8, this reduces the computational effort significantly.

We have also experimented with Wendland functions which yielded

visually similar results at higher costs. Therefore, we prefer the

B-spline basis.

Constraint sampling. Since the resolution of the discretiziation

grid is typically much lower than the average sample spacing of

the embedded surfaces, performing all calculated constraints leads

to heavy oversampling. We can save running time by sampling all

constraints at a sampling factor ǫsampling that is chosen below the

Nyquist limit of the discretization grid. In our implementation, a

choice of ǫsampling = 0.25ǫgrid worked well.

Coplanarity constraints (continuous symmetry). For each set

of adjacent planar triangle faces, we take the corresponding point set

of Pi ∈ S, and constrain those points to stay on a plane. In particular,

we project the points onto the surface along normal direction, and

compute the distance for each point pair. Then, we can get a sum-

of-squares energy similar to Equation (4), which is solved using the

same technique.

Colinearity line constraints (continuous symmetry). We sub-

divide each feature line (i.e. continuous list of colinear edges in the

template mesh) into directed segments using consecutive constraint

points extracted at grid cell intersections, then compute the optimal

solution to keep their direction vectors the same.

7. Results

We performed scans of everyday objects with a Microsoft Kinect and

KinectFusion to obtain target surfaces D for our examples. These

are denoted Target in the result figures. As the ICP implementation

is not the focus of this paper, we simplified the scans by removing

parts like the floor and the background, which are not related to the

original object.

For each object scanned, we then searched a similar 3D model

in shape libraries, specifically in Digimation ‘The Archive’ (DSLR

camera, TV set, bowl) and in Google 3D Warehouse (all other

models except where noted otherwise), to which we applied the

symmetry detection algorithm of Section 5 after we had scaled it to

unit length. Next, we manually perform a coarse rigid alignment with

scaling. From this initial alignment, we apply our new algorithm as

well as several other variants of the ICP algorithm, for comparison.

These variants are Rigid ICP, Affine ICP, Deformable ICP (with

TPS regularizer, Equation 5), and our new deformable ICP with

additional Symmetry constraints. In order for the results to be com-

parable, we use the same implementation: Deformable is obtained

by switching off the symmetry constraints, and Affine in addition

uses a very large weight λr such that only affine mappings are ob-

tained. In all cases, we perform 100 ICP iterations (to guarantee

convergence). We use linear basis functions, followed by a single

iteration with the smooth basis functions in case of Deformable and

Symmetry. For Rigid ICP, we use a state-of-the-art ICP implemen-

tation [MGPG04].

Symmetry-aware fitting. Figures 4–16 show the results obtained

from our approach and various baseline methods. Our symmetry

constraints are in particular helpful in inferring the shape of the

object in regions of missing data: Figures 4 and 5 show examples

where missing and corrupted data are inter and extrapolated using

symmetry. In Figure 4, rows 1 and 2, for example, the complete

backside of the cooking pot is missing in the scanned data. Our

results do not show distortions in the regions of missing data, unlike

traditional deformable ICP. The same effect is visible in Figure 4,

row 3, which shows a low-quality scan of a pan made of hard-to-

acquire reflective metal. Again, maintaining the symmetry of the

template avoids implausible deformations.

Figure 5 illustrates a limitation: The handle of the cup is not rigidly

symmetric (except from cross-sectional reflection); thus, false ICP

correspondences can distort the shape.

Figure 6 shows the results for the camera data set. The rotational

symmetry of the lens is preserved by rotational symmetry constraints

while the continuous symmetry constraints keep the case of the

camera in a rectangular shape. This is a considerable improvement

over deformable ICP alone which exhibits numerous distortions and

local deformations. Parameters have to be chosen carefully, though;

we had to increase the weights for continuous symmetry by a factor

of 10 for this example. A comparison to standard parameters is

included in the figure. Generally, the need to choose parameters is

a limitation of our least-squares formulation.

Traditional deformable ICP. Without the additional symmetry

constraints, the deformable ICP is more susceptible to distortions

and local deformations. Small irregularities can be compensated

(Figure 4, rows 8 and 10) but in regions of missing or highly cor-

rupted data (e.g. Figure 4, rows 1 and 2), simple smoothness is

not sufficient. Preserving symmetry leads to more plausible results

while still matching the input data: Figure 7 shows an overlay of the

different ICP variants with the scanned data.

Rigid ICP. As a sanity check, we also register the scaled template

with the data using standard rigid ICP. If the shape of the template

mesh is very close to that of the object scanned, this method can

produce reasonable results (Figure 4, rows 1, 2 and 10). Often,

the available template is too different to give a good alignment

(for example, Figure 8). Figure 6 shows a complex example: We

reconstruct a plausible camera model from a template that is quite

different from the input data; the original, rigidly aligned model

does not resemble the target data well (in particular, lens diameter/

length).

Further baseline tests. As an additional comparison, we compare

to ICP with affine mappings (i.e. permitting rotation, translation,

shear and scaling). For some template/scan pairs, this works well

(for example, Figure 4, rows 1 and 2) but affine mappings lack the

flexibility of general deformations and often cannot match the scan

well. Nonetheless, the risk of artefacts increases, too: Particularly,

the shearing can lead to heavy distortions. Examples for this can be

found in Figure 4, rows 3 and 8, or Figure 9 (bottom).
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Figure 4: Comparison of the results of different ICP variants. From

top to bottom: Cooking pot (single-view, front); the same cooking pot

(single-view, back); frying pan (single-view); rounded cup (single-

view); chair (full scan); the same chair (single-view); armchair (full

scan); office chair (full scan); the same office chair (single-view);

oval table (full scan); bar table (single-view).

SymmetryDeformableAffineRigidTarget

Figure 5: Single-view scan of a cone-shaped cup. The symmetry-

guided ICP is much closer to the target shape. Only the handle of

the cup shows some distortion because the symmetry structure could

not be detected properly.

Decreased weightFinal result

SymmetryDeformableAffineRigidTarget

Figure 6: Scan of a DSLR camera. There are significant differences

in proportion between the actual object and the template model. The

rotational symmetry of the lens is preserved by the deformable ICP

with symmetry constraints. To the best of our knowledge, achieving

results of this quality is impossible with methods described in the

literature so far. The final result was obtained by increasing the

weight of the continuous symmetry constraints. The top right shows

the intermediate step with decreased weights.

Previous structure-aware deformation. We also compare our

method to previous work by Bokeloh et al. [BWKS11]. Their

method does not perform scan registration, but we use their de-

formation model within our framework. The main difference is

that their model only considers translational symmetries. These are

(continuous) colinearity, and coplanarity, as well as (discrete) reg-

ular grids with at least three instances in each direction. In all of

our examples, no discrete grids show up; we therefore reproduce

their model by only using continuous translational constraints. As

shown in Figure 10, the full set of symmetry constraints yields sig-

nificantly better results. As seen well in the camera example, the

reduced model only maintains straight lines and planes. In contrast,

our full model also preserves rotational symmetry and, more impor-

tantly, the relations between straight lines and planes by establishing

non-local reflective and rotational relations between them. This is

clearly visible within the body of the camera or the blades of the fan.

The follow-up paper [BWSK12] uses the same translational struc-

ture model but hard constraints to reduce residual bending. This

crucially relies on the linearity of the group actions, which excludes

the rotations supported in our framework.

The continuous symmetry constraints are useful in many applica-

tions, but there are cases where these additional constraints are not

desired. Figure 9 presents corresponding results for an hourglass
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SymmetryDeformableAffineRigid

Figure 7: Overlays of the deformed models and the corresponding

target shapes. From top to bottom: Cone-shaped cup, rounded cup

and office chair (single-view). In complex cases where no tight

template is available, only the deformable ICP variants can match

the data closely. Then, the symmetry-guided model proposed in this

paper preserves the structure better (as shown in the earlier figures).

SymmetryDeformableAffineRigidTarget

Figure 8: Scan of an LCD monitor; the template is a CRT TV. We

had to disable the coplanarity constraints, as the ICP was otherwise

prevented from gradually establishing correspondences in the area

that was not initially touched by the target surface, preventing most

of the deformation.

and a bowl, both objects that exhibit rotational symmetries only,

where the continuous symmetries have been disabled. The continu-

ous symmetry constraints try to prevent the deformation field from

adapting straight edges and planar surfaces to small local deforma-

tions in the scanned data. For the hourglass, the cylinder that was

used as a template model is just an approximation of a real cylinder.

The side consists of many planar surfaces that create coplanarity

constraints and the edges that connect them create colinearity con-

straints. If enforced, these constraints prevent the cylinder from

adapting the typical hourglass shape. The situation with the bowl is

similar, although there are less planar surfaces. The cylinder used

as template mesh for the hourglass was modelled in a professional

3D modelling suite. For the bowl, we used ICP constraints from the

template shape to the scanned data in addition to the normal ICP

SymmetryDeformableAffineRigidTarget

Figure 9: Scan of an hourglass (top) and of a bowl (bottom). Due to

the nature of the scanned objects (curved surfaces are predominant

in the scans), continuous symmetry constraints were not enforced.

For the hourglass, for example, the continuous symmetries detected

in the mantle of the cylinder would prevent the deformation to

the hourglass shape. The symmetry-guided ICP provides excellent

results. The traditional deformable ICP exhibits distortions.

FullContinuousFullContinuous

Figure 10: This figure provides a comparison between [BWKS11,

BWSK12] (Continuous), which uses just continuous symmetry con-

straints, and the deformable ICP with all symmetry constraints

(Full). The full set of symmetry constraints governs the deformation

on a more global scale and provides better results. The continuous

symmetry constraints enforce planar surfaces and straight edges

only in localized parts without higher level consistency.

constraints. While this is often detrimental, particularly if the scan

has lots of missing data, in this case it prevented that the whole

scanned data were being fitted by only a part of the template.

Quantitative evaluation. A quantitative evaluation of the chair

data sets (Figure 4, rows 5 and 6) with ground truth data is shown in

Figure 11. The results and the high-quality ground truth reference

scan can be seen in Figure 12. In addition, Table 1 provides root-

mean-square error (RMSE) values. The RMSE values are calculated

as

eRMSE(S,D) =

√

1
∑

i wi

∑

i

wi

∥

∥pj − di

∥

∥

2
, (9)

with di ∈ D and pj ∈ S. The closest point index j is selected in a

way that makes pj the point in S closest to di , as in Equation (4).

The weighting factors wi are chosen as the combined area of all

triangles comprising the respective vertex di . The values given in

the table were obtained by averaging the RMSE from the deformed
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SymmetryDeformableAffineRigid

Figure 11: Error visualization of the chair data sets (Figure 4,

rows 5 and 6). The upper and lower row use different scans, as

shown in Figure 12 (Full and Single). For visualization, the error

values are normalized per data set (row) and range from the lowest

error observed (blue) to the highest error observed (red). Symmetry

exhibits higher error values due to the additional constraints. For

the single-view scan (bottom row), the advantage of the additional

constraints can be seen: Deformable shows a higher error in the

rear right leg due to missing data. The scan that served as reference

can be found in Figure 12 (right). The corresponding RMSE values

are summarized in Table 1.

ReferenceSingleFull

Figure 12: Depiction of the scans used to generate the results for

the chair data sets (left and middle) and the scan used to generate

the error visualizations shown in Figure 11 (right).

template mesh to the reference scan and from the reference scan to

the deformed template mesh. The deformable ICP variants fit the

data more closely. Symmetry exhibits slightly higher error values

than Deformable, especially at the borders of the mesh. This is the

expected results, as all the additional symmetry constraints influence

the result of the optimization procedure, preventing Symmetry from

fitting the data as closely as Deformable. The RMSE is also slightly

increased in this case. For the single-view scan, Symmetry achieves a

better value for the RMSE than Deformable. Again, this is consistent

Table 1: RMSE values corresponding to the error visualizations shown in

Figure 11. The deformable ICP variants exhibits lower errors; Symmetry is

more constraint and therefore produces a slightly higher error in general.

For the single-view scan of the chair, however, the error in Deformable is

higher due to missing data that leaves one of the chair’s legs unconstrained.

This is consistent with our expectations. If data are missing, the symmetry

constraints allow a better prediction of the shape in those areas. If all the

data are available, the data cannot be accommodated to the extend that

Deformable does.

RMSE

Object Rigid Affine Deformable Symmetry

Chair, full 0.0296 0.0339 0.0239 0.0246

Chair, single 0.0307 0.0292 0.0246 0.0234

FixedDefault Tf FixedDefault Tf

Decreased weightFinal result

Figure 13: Comparison between the results for the camera data set

(Figure 6) and the results without updates to the symmetry transfor-

mations Tf . When the transformations are not updated, the scanned

data cannot be accommodated well. To further illustrate the effect,

the second row visualizes the error with respect to the scanned data.

The scan is missing the whole bottom side of the camera and parts

of the bottom of the lens, which can be seen in the visualization as

high error values in the bottom part of the lens.

with the expectations. A lot of data of the rear right of the chair are

missing, and Deformable is unconstrained in these areas. Symmetry

makes a better prediction of the object shape in this case, and hence

the lower RMSE value.

Update of the symmetry transformations T f . Figure 13 exam-

ines the effect of the update of the symmetry transformations Tf

on the final result for the camera data set. To this end, the results

were recreated without updating the initial transformations. As ex-

pected, the lacking update has a serious impact on the algorithm’s

capabilities to accommodate the scanned model.

Timings. All results were generated using a single-threaded C++

implementation running on an Intel Core i7-840QM processor at

1.87 GHz with 8 GB of RAM. The runtimes for Deformable and

Symmetry are summarized in Table 2. Building the system matrix

dominates the runtime. Here, symmetry constraints are more costly

than other constraint because we have to integrate over large, over-

lapping areas. The type of basis function also affects the runtime; lin-

ear functions have small support (two overlapping functions) while

B-splines (overlap factor 4) and Wendland functions (we have used

an overlap of 7) are much more costly. We belief that the timings
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SymmetryDeformableAffineRigidTarget

w/ handlesSymmetryw/ handlesDeformable

Figure 14: Scan of a small fan. For the traditional deformable

ICP and the symmetry-guided ICP, three handles have been used

to shorten the blades of the fan and make the hub less pronounced

in the final result. For the symmetry-guided ICP this is sufficient

to get a good result due to the propagation of the deformation by

the symmetry constraints. For traditional deformable ICP, only the

topmost blade is shortened. Comparisons with and without handles

are on the bottom. To avoid distortions introduced by the handle

constraints, the weights of the symmetry constraints have been in-

creased 10-fold.

SymmetryDeformableAffineRigidTarget

Figure 15: Full scan of a stepladder (top) and the armchair from

Figure 4, row 7 (different template). The symmetry-guided ICP pro-

duces a result that is very close to the template model and therefore

not a good fit for the data. Spurious symmetries detected for the

template in combination with the continuous symmetry constraints

prevent most deformation.

can still be improved substantially; optimizing the numerics this is

not in the focus of our paper.

User guidance. Deformable ICP often requires user guidance in

addition to a rigid initialization. Again, symmetry constraints reduce

the efforts: Figure 14 shows an example. We register a scan of fan

against a template (the template shape was created manually for this

task). In the initial results (Figure 14, bottom), the size of the rotor

Table 2: Average time per iteration for traditional deformable ICP and

symmetry-guided ICP. The upper part of the examples uses Wendland kernels

as basis functions, the lower part uses a cubic B-spline basis. Due to the

reduced overlap, the computation times are much shorter (see text). Visually,

there is no noticeable difference.

Linear basis functions Smooth basis functions

Object Deformable Symmetry Deformable Symmetry

Bar table 0.48 s 2.51 s 0.65 min 19.87 min

Cooking pot 1.18 s 22.86 s 1.97 min 195.23 min

Cone-shaped cup 0.85 s 7.52 s 4.96 min 31.30 min

Rounded cup 0.99 s 7.70 s 5.24 min 84.14 min

Frying pan 1.50 s 6.11 s 1.40 min 53.01 min

Chair, full 0.46 s 2.19 s 1.96 min 24.92 min

Chair, single 0.35 s 2.49 s 0.86 min 24.66 min

Oval table 1.17 s 9.06 s 2.26 min 69.47 min

Armchair 2.74 s 14.82 s 4.68 min 99.19 min

Armchair, simple 1.19 s 3.44 s 2.82 min 26.07 min

Square table 1.48 s 12.53 s 2.76 min 126.70 min

Stepladder 2.51 s 4.93 s 1.03 min 46.03 min

Office chair, full 0.68 s 2.15 s 1.62 min 15.05 min

Office chair, single 0.65 s 1.94 s 1.28 min 14.16 min

Hourglass 1.59 s 7.94 s 0.63 min 6.84 min

Bowl 1.15 s 3.02 s 0.73 min 2.28 min

Fan 0.40 s 1.96 s 0.17 min 1.54 min

Camera 0.93 s 4.56 s 0.53 min 3.51 min

TV 1.55 s 3.20 s 0.59 min 2.11 min

is not correctly matched. The problems occur because the small

sides of the blades provide insufficient point-to-plane constraints

to successfully match the data. To fix the problem, three handle

constraints are sufficient—two at the topmost blade (downward

displacement) and one at the hub (fixing the position). We also

increase the weight of the symmetry constraints 10-fold to avoid

distortions due to the pointwise handles. To achieve the same re-

sult with deformable ICP alone, many more, consistently placed

handles would be needed. Figure 14 (bottom) shows a comparison

for the results of the fan data set with and without handle con-

straints. Deactivating symmetry constraints leads to worse results.

Symmetry-aware deformation with handles can be used to edit and

fine-tune the results with greatly reduced effort. A sample editing

session for this data set (which demonstrates this improvement) can

be found in the video S1 in the Supporting Information.

8. Parameters

If not noted otherwise, the parameters described in this section apply

to all results shown in this paper.

Deformation model. We choose a value of 0.1 for the grid spac-

ing ǫgrid, and set the weight of the symmetry constraints λs to 3 and

the weight of the regularizer λr to 1. For the weight of the handle

constraints λc, we choose a value of 100. In the case of the affine

ICP, λr is set to 10 000.
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Our empiric evaluation showed that setting the weight of the

symmetry constraints λs at least three times as high as the weight

of the ICP-like constraints (that have an implicit weight of 1) is

sufficient. For all our examples, the constraints were then respected

during the optimization procedure. The one exception was Figure 6,

where the weights of the continuous symmetry constraints were not

high enough to prevent the distortion of the camera body favoured by

the ICP-like constraints. (We increased the weights of the continuous

symmetry constraints to a value of 30 for the generation of the final

result.) In general, choosing lower values for λs removes the bias

towards a symmetric solution. The results are then similar to those of

traditional deformable ICP. Figure 14 shows results with manually

placed handle constraints. The weight of the handle constraints,

λc, is significantly higher than the weights of the other constraints,

leading to local deformations of the fan blade where the constraint

is placed. We therefore increased the value of λs to 30. With this

setting, the local deformations are negligible. The downside is that

the handle constraint are no longer perfectly fulfilled.

Symmetry detection. We use a uniform angle threshold of 1◦ for

checking colinearity and coplanarity, and use 4 min(ǫgrid, µ) as the

distance threshold for checking feature and geometry compatibility,

where µ is the length of shortest feature line. After symmetry detec-

tion, we examine the symmetries found by the algorithm and set a

model-specific cut-off threshold based on the number of supporting

points. This cut-off threshold is typically below 50%. All symme-

tries with less than this number of supporting points are discarded.

During the detection of the coplanarity constraints, we require that

the planes we select cover at least 1% of the total surface area.

ICP-like constraints. We set the percentile threshold td to 80

and the near field threshold tnf to 0.05. The uniform setting for the

latter is motivated by the fact that all input models are scaled to unit

length during pre-processing.

9. Limitations

Fixed structure. An important limitation is that the symmetries are

taken as detected in the template: If the structure differs from the

data this creates bias unless we use manual intervention. Manual

intervention is used in two examples: For the bowl and hourglass

shown in Figure 9, the continuous symmetries where deactivated

to be able to use the overly simple templates. We also observed

certain issues with the use of particular configurations of symmetry

constraints. If multiple symmetries comprise the same parts of the

template mesh (e.g. a reflective symmetry that extends into a part

that also has a rotational symmetry), such configurations can locally

lock the template mesh in place preventing it from deforming (Fig-

ure 15; to a lesser extent Figure 4, rows 8 and 10). Again, selectively

breaking constraints of the template would be required here.

Local convergence. Sometimes symmetry constraints can pre-

vent the local ICP from converging to a stable set of correspon-

dences. In Figure 16, the horizontal component of the ICP con-

straints is countered by the symmetry constraints, while the vertical

component makes the table extend to the bottom. In subsequent

steps, different correspondences are chosen, increasing the effect

with each iteration. The same problem also affects affine registra-

tion. A similar situation occurs in Figure 4, row 11, for the affine

SymmetryDeformableAffineRigidTarget

SymmetryAffine

Figure 16: Partial scan of a square table. The ICP algorithm fails

to find a stable set of correspondences for the constraint variants

affine ICP and symmetry-guided ICP. The affine variant completely

diverges. The bottom row shows results with a single handle con-

straint attached to a table leg.

registration. Placing a single handle constraint largely eliminates

this behaviour. The traditional deformable ICP does not show these

issues, as the regularizer by itself does not influence the ICP con-

straints as strongly. In one case, Figure 8, the coplanarity constraints

almost completely prevented the initial correspondences from up-

dating which lets the algorithm converge with too little deformation.

In summary, our algorithm is a locally convergent shape matching

technique that requires good initialization and possibly user guid-

ance; it should be considered as a refined (deformable) ICP algo-

rithm, not a fully automatic shape matching system.

10. Conclusion and Future Work

We have presented a constrained optimization framework for

symmetry-aware template mesh deformation that fits a user-

provided 3D model to low-quality scanning data. The symmetry

structure of the template geometry is preserved in a least-squares

sense. We have validated the method by reconstructing a number

of low-quality KinectFusion scans using suitably chosen template

models. In comparison to previous methods, we obtain more plau-

sible reconstructions that match the scanned geometry closely even

if the template is quite different.

In future work, we would like to automatically select suitable

subsets of symmetry constraints obtained from analysing both the

template and the input data (which is more challenging due to poten-

tially high noise levels and distortions). It would also be interesting

to investigate fully automatic alignment of the template mesh and

scanned data. To this end, symmetry properties such as symmetry

axes and planes might be useful invariants that could be matched

even if the geometry differs substantially. Currently, the runtime

costs of construction and evaluation of the symmetry constraints

make the framework not suitable for real-time user interaction.

We would like to investigate the reformulation of the numerics for

higher speed and possibly a suitable general-purpose computation

on graphics processing units implementation to make the approach

more interactive.

Another avenue for future research is the automatic selection of a

suitable template mesh from a database (e.g. following the approach

in [KMHG13], possibly by conjointly performing a symmetry
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analysis), which would then no longer require the user to select

a suitable model manually.

We think that in the future there will be an increasing demand

for more general structure models, beyond rigid symmetry. Incorpo-

rating weakly supervised machine learning to establish correspon-

dences and learn more general groups of admissible mappings might

be a potential avenue towards addressing this difficult challenge.

We would also like to investigate methods to overcome the limi-

tations of the fixed template (which include fixed topology), such as

the combination of a coarse initial template with implicit function

fitting. This might enable us to perform topology-varying deforma-

tion while preserving the symmetry structure of the template.
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